Особенности репродукции днк и рнк содержащих вирусы

Обновлено: 23.04.2024

1. Адсорбция вируса на специфических рецепторах чувствительной клетки благодаря белкам прикрепления (адгезинам) и адресным. Белки адгезины имеют форму нитей (фибры у аденовирусов) или шипов у орто-, парамиксовирусов, рабдовирусов. Вначале происходит единичная связь вириона с рецептором – такое прикрепление непрочное – адсорбция носит обратимый характер. Чтобы наступила необратимая адсорбция должны появиться множественные связи между рецептором вируса и рецептором клетки, т.е. стабильное мультивалентное прикрепление.

На клетках существуют различные структуры-рецепторы, к которым прикрепляются вирусы своими рецепторами. У орто- и парамиксовирусов их роль выполняют ганглиозиды (сиалосодержащие гликолипиды), у вируса иммунодефицита человека (ВИЧ) – гликопротеид 120 и др. Примеры клеточных рецепторов: CD4 – молекула для ВИЧ, b-адренергические рецепторы – для реовирусов.

2. Проникновение вируса в клетку может идти двумя путями: виропексиса и слияния вирусной и клеточной мембран.

При виропексисе (эндоцитозе) происходит инвагинация участка клеточной мембраны, образование внутриклеточной вакуоли, а далее вакуоль с вирусом может попадать в разные участки цитоплазмы или в ядро клетки.

Процесс слияния осуществляется с помощью вирусных белков капсидной или суперкапсидной оболочек, которые сливаются с плазматической мембраной клетки хозяина.

У парамиксовирусов имеется специальный F-белок, вызывающий слияние клеточных и вирусных мембран. Сходные белки имеются у других вирусов. У вируса гриппа это гемагглютин, который обусловливает адсорбцию его на мембране клетки.

4. Биосинтез компонентов вирусов. Нуклеиновая кислота, проникшая в клетку, несет генетическую информацию, которая конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет метаболизм клетки и заставляет ее синтезировать вирусные белки и нуклеиновые кислоты, которые идут на построение вирусного потомства.

Так как генетический аппарат вирусов различен, то передача наследственной информации и синтез ДНК и РНК отличаются.

При инфицировании РНК-содержащим вирусом РНК синтезируется с помощью РНК-полимеразы на матрице вирусной РНК; синтез вирусных белков происходит в цитоплазме, а РНК в ядре или в цитоплазме (пикорнавирусы, тогавирусы).

Для (+)РНК-нитевых вирусов (флави-, пикорна-, тогавирусы) функцию информационной РНК выполняет сам геном, который является матрицей для новых молекул РНК, на основе которых в рибосомах синтезируются вирусные белки.

У (-)РНК-вирусов (орто-, парамиксо-, рабдовирусы) геном не выполняет функцию информационной РНК, не обладает инфекционностью, но вирусы имеют РНК-полимеразы, необходимые для синтеза РНК, комлементарных геному, т.е. мРНК, которые обеспечивают синтез вирусных белков.

Иначе осуществляется репликация РНК-содержащих ретровирусов (онкогенные, ВИЧ), в составе которых есть обратная транскриптаза или ревертаза- способен индуцировать синтез цепи вирусной ДНК на матрице вирусной РНК. Этот процесс называется обратной транскрипцией. На матрице одной ДНК-цепи синтезируется комплементарная ей вторая; образовавшаяся двунитевая ДНК переносится в ядро. Клеточная ДНК подвергается сплайсингу (под влиянием эндонуклеаз) с образованием рекомбинантов с этой вирусной ДНК. Возникает ДНК-провирус. С помощью клеточной ДНК-зависимой РНК-полимеразы интегрированный в ДНК клетки ДНК-провирус считывается с последующим синтезом вирусных (+)РНК и мРНК, которые определяют образование вирусных структурных белков и ферментов. Продолжающийся синтез цепей ДНК обеспечивает новые вирионы геномом.

Вирусы не способны размножаться на питательных средах – это строгие внутриклеточные паразиты. Более того, в отличие от риккетсий и хламидий, вирусы в клетке хозяина не растут и не размножаются путем деления. Составные части вируса – нуклеиновые кислоты и белковые молекулы синтезируются в клетке хозяина раздельно, в разных частях клетки – в ядре и цитоплазме. При этом клеточные белоксинтезирующие системы подчиняются вирусному геному, его НК.

Репродукция вируса в клетке происходит в несколько фаз:

1)первая фаза – адсорбция вируса на поверхности клетки, чувствительной к данному вирусу.

2)вторая фаза – проникновение вируса в клетку хозяина путем виропексиса.

В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

ДНК-содержащие (ДНК- и РНК-белок):

1)репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК-полимеразу клетки.

2)репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК-полимеразу.

1)рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

2)рибовирусы с негативным геномом (минус-нитиевые): грипп, корь, паротит, орто-, парамиксовирусы.

(-)РНК, иРНК-белок (иРНК-комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента – вирионная РНК-зависимая РНК-полимераза (в клетке такого фермента быть не может).

3)ретровирусы (-)РНК, ДНК, иРНК-белок (иРНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента – РНК-зависимой ДНК-полимеразы (обратнойтранскриптазы или ревертазы).

4)четвертая фаза – синтез компонентов вириона. Нуклеиновая кислота вируса образуется путем репликации. На рибосомы клетки транслируется информация вирусной иРНК, и в них синтезируется вирус-специфический белок.

5)пятая фаза – сборка вириона. Путем самосборки образуются нуклеокапсиды.

6)шестая фаза – выход вирионов из клетки. Простые вирусы, например, вирус полиомиелита, при выходе из клетки разрушают ее. Сложноорганизованные вирусы, например, вирус гриппа, выходят из клетки путем почкования. Внешняя оболочка вируса (суперкапсид) формируется в процессе выхода вируса из клетки. Клетка при таком процессе на какое-то время остается живой.

Описанные типы взаимодействия вируса с клеткой называются продуктивными, так как приводят к продукции зрелых вирионов.

Кроме обычных вирусов, существуют прионы – белковые инфекционные частицы, не содержащие нуклеиновую кислоту. Они имеют видфибрилл, размером до 200 нм. Вызывают у человека и у животных медленные инфекции с поражением мозга: болезнь Крейтцфельда-Якоба, куру, скрепи и другие.

4)Особенности репродукции вирусов в зависимости от типа нуклеиновой кислоты (+ и – РНК). Виды взаимодействия вирусов и клетки: продуктивный, абортивный, интегративный.

В зависимости от типа нуклеиновой кислоты этот процесс совершается следующим образом.

ДНК-содержащие (ДНК- и РНК-белок):

1)репродукция происходит в ядре: аденовирусы, герпес, паповавирусы. Используют ДНК-зависимую РНК-полимеразу клетки.

2)репродукция происходит в цитоплазме: вирусы имеют свою ДНК-зависимую РНК-полимеразу.

1)рибовирусы с позитивным геномом (плюс-нитиевые): пикорна-, тога-, коронавирусы. Транскрипции нет.

2)рибовирусы с негативным геномом (минус-нитиевые): грипп, корь, паротит, орто-, парамиксовирусы.

(-)РНК, иРНК-белок (иРНК-комплементарная (-)РНК). Этот процесс идет при участии специального вирусного фермента – вирионная РНК-зависимая РНК-полимераза (в клетке такого фермента быть не может).

3)ретровирусы (-)РНК, ДНК, иРНК-белок (иРНК гомологична РНК). В этом случае процесс образования ДНК на базе (-)РНК возможен при участии фермента – РНК-зависимой ДНК-полимеразы (обратнойтранскриптазы или ревертазы).

Типы взаимодействия вируса с клеткой.

Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.Продуктивный тип— завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип— не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.

Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбирует­ся на определенных участках клеточной мембраны — так назы­ваемых рецепторах. Клеточные рецепторы могут иметь разную хи­мическую природу, представляя собой белки, углеводные компоненты белков и липидов, липиды. Число специфических ре­цепторов на поверхности одной клетки колеблется от 10 4 до 10 5 . Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку. Существует два способа проникнове­ния вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной. При виропексисе после адсорб­ции вирусов происходят инвагинация (впячивание) участка кле­точной мембраны и образование внутриклеточной вакуоли, ко­торая содержит вирусную частицу. Вакуоль с вирусом может транс­портироваться в любом направлении в разные участки цитоплаз­мы или ядро клетки. Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирус­ные белки и нуклеиновые кислоты, идущие на построение вирусного потомства.Реализация генетической информации вируса осуществляет­ся в соответствии с процес­сами транскрипции, трансляции и репликации.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодей­ствии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми­руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).


С помощью специфического белка слияния F-белка, который находится в суперкапсиде, вирус прикрепляется к специфическому рецептору на клетке. Происходит активация биохимических процессов и мембрана клетки вместе с рецептором впячивается внутрь клетки, т.е. происходит инвагинация мембраны по типу пиноцитоза.

Особенности строения рецептора и вируса позволяют этому комплексу проникнуть в клетку путем перемещения в мембрану.

3. ПРОНИКНОВЕНИЕ С ПРЕДВАРИТЕЛЬНОЙ ДЕПРОТЕИНИЗАЦИЕЙ (РАЗДЕВАНИЕ ВИРУСА).

При взаимодействии вируса с рецептором выделяются протеазы, которые расщепляют белковую оболочку вируса и только вирусная нуклеиновая кислота попадает в клетку.

4. СМЫКАНИЕ ВИРУСА И КЛЕТОЧНОЙ МЕМБРАНЫ.

Сложная суперкапсидная мембрана вируса смыкается с клеткой в области рецептора. Затем она разрывается, обтекает рецептор и выталкивает вирус внутрь клетки, а суперкапсида встраивается в клеточную мембрану, т.е. вносит чужеродный материал. Поэтому вирусы, нарушая экспрессию белков главного комплекса гистосовместимости, вызывают аутоиммунные реакции.







5. ВИРУС КОМПЛЕКСИРУЕТСЯ С КАКИМ-ЛИБО ПИТАТЕЛЬНЫМ СУБСТРАТОМ (например, дисахаридом).

Этот путь был изучен в тканевых клетках.

Вирусы – облигатные паразиты.

После проникновения вируса в клетку обычно происходит его раздевание, т.е. депротеинизация – разрушение капсида.

Репродукция вирусов определяет варианты взаимодействия вируса с клеткой, проявляющихся в характере вирусной инфекции.

продуктивная вирусная инфекция.

Благодаря взаимодействию вируса с геномом клетки формируется множество копий вирусных нуклеиновых кислот, которые после образования вирионов выбрасываются из клетки, которая затем погибает, так как метаболические процессы клетки направлены на репродукцию вируса, кроме того, иногда выделяются токсичные фрагменты.

Генетическая информация вируса интегрируется с ДНК клетки и может воспроизводиться при делении клетки. Это характерно для латентных вирусных инфекций, в том числе в начальной стадии медленных вирусных инфекций, никак не проявляющихся в виде болезни.

Генетическая информация вирусов теряется в одной или обеих дочерних клетках.

Особенности репродукции вирусов в клетках связаны с типом нуклеиновых кислот, которые содержат вирусы. Например, РНК + и РНК - - вирусы. Это условное понятие. РНК + являются аналогом генома матричной РНК клетки. Если РНК + попадает в клетку, то сразу начинается синтез белка. В ряде случаев для начала синтеза сначала должна появиться копия РНК.

ДНК транскрипция с ДНК РНК с нее идет считывание

двунитевые ДНК-содержащие вирусы.

репродукция РНК- содержащих вирусов осуществляется в цитоплазме.

двунитевые РНК-содержащие вирусы.

Рео- и ротавирусы

Транскрипция является самостоятельным этапом репродукции.

Молекулы РНК служат матрицей как для репликации вирусного генома, так и для транскрипции.

в цитоплазме клетки высвобождается геном.

На минус - цепи РНК синтезируются плюс - цепи, выполняющие роль мРНК с помощью РНК-зависимой-РНК-полимеразы – фермента, который есть только у вирусов.

РНК + - транскрипты идут на рибосому. С них происходит трансляция и с помощью клеточных полимераз образуются белки.

Параллельно на РНК + синтезируется РНК - - цепь с помощью вирусной РНК-зависимой-РНК-полимеразы.

Соединение двух цепей РНК.

Формирование вирусных частиц.

Выход вирионов. Гибель клетки.

РНК - - цепь не может использоваться клеткой в качестве мРНК. Поэтому на ней, как на матрице синтезируются плюс - цепи, участвующие в процессе трансляции (синтез белка на матричной РНК). При формировании вирионов происходит обратный процесс синтеза минус – цепей РНК на матрице плюс – цепей.

РНК + - вирусы (например, пикорнавирусы (полиомиелита).

Проникают в клетку с помощью виропексиса. Транскрипции нет. РНК + выполняет роль мРНК и с нее сразу идет синтез вирусных белков.

А) ранняя стадия – на рибосомах формируется полипротеиновая молекула, на которую действуют клеточные протеиназы. Образуются ранние вирусные белки – РНК – полимераза и регуляторные белки. После образования РНК-полимеразы, начинается синтез копии РНК + - РНК - . С РНК - считывается информация и формируется множество копий РНК + и параллельно формируются белковые молекулы капсомеров.


РНК- зависимая –РНК – полимераза

РНК + протеазы


полипептид, на который действуют протеазы, образуются ранние белки: РНК – полимераза и регуляторные белки.

ВИЧ связывается гликопротеином gp120 с рецептором CD4 Т хелперов, макрофагов и др. кл. После слияния оболочки ВИЧ с плазмалеммой клетки в цитоплазме освобождаются геномная РНК и обратная транскриптаза вируса, которая на матрице геномной РНК синтезирует комплементарную минус- нить ДНК (линейная кДНК).

С линейной кДНК копируется плюс-нить с образованием двойной нити кольцевой кДНК,

двойная кольцевая кДНК интегрирует с хромосомной ДНК клетки.

С рекомбинантной ДНК – провируса синтезируются геномная РНК и иРНК, которые обеспечивают синтез компонентов и сборку вирионов.

Вирионы выходят из клетки почкованием: сердцевина вируса “одевается” в модифицированную плазмолемму клетки.

Вирус адсорбируется на мембране клетки в результате взаимодействия гемагглютинина с сиаловой кислотой поверхности клетки.

Проникновение вируса в клетку происходит путем эндоцитоза – поглощения в покрытых везикулах (1) и перемещения в эндосому.

2) После подкисления среды оболочка вируса сливается с мембраной эндосомы.

3) Вирусный рибонуклеопротеид, состоящий из фрагментированной РНК и белков (NP, PB1, PB2, PA), освобождается в цитоплазме клетки и проникает в ядро.

Геномная минус-нить РНК трансформируется вирусной РНК - зависимой РНК – полимеразой в неполные и полные плюс – нити.

4) Полные плюс – нити являются матрицей (промежуточная стадия) для синтеза геномных минус – нитей РНК (9),

неполные плюс – нити являются иРНК для синтеза вирусных белков (5-7).

5) В цитоплазме клеток появляются неструктурные компоненты NS1 и NS2.

В цитоплазме на свободных полирибосомах синтезируются капсидные белки (6) вируса (NP, PB1, PB2, PA) и белок М (7).

При этом капсидные белки перемещаются из цитоплазмы в ядро,

и в ядре связываются с синтезированной геномной РНК, образуя рибонуклеопротеид (нуклеокапсид), который мигрирует из ядра в цитоплазму клетки.

10) Белок М движется к внутреннему слою мембраны клетки.

На рибосомах, расположенных на мембранах эндоплазматического ретикулума синтезируются гемагглютинин и нейраминидаза. Затем они транспортируются и встраиваются в виде шипов снаружи в мембрану клетки (напротив белка М, находящегося под мембраной).

Протеиназы нарезают гемагглютинин на НА1 и НА2.

Выход вируса из клетки происходит почкованием. Сформированный нуклеокапсид, проходя через мембрану клетки, окружается белком М и измененной мембраной клетки, содержащей гемагглютинин и нейраминидазу.

Геном гепаднавирусов представлен двунитевой кольцевой ДНК, одна нить которой (неполная плюс- нить) короче другой.

HbsАг связывается с полимеризованным человеческим сывороточным альбумином и другими белками сыворотки. Это облегчает прикрепление вируса к мишени в печени.

После проникновения в клетку сердцевины вируса неполная нить ДНК – генома достраивается.

Формируется полная двунитевая ДНК и

созревающий геном попадает в ядро клетки.

В ядре клеточная ДНК-зависимая РНК – полимераза синтезирует разные иРНК (для синтеза вирусных белков) и РНК – прегеном – матрицу для репликации генома вируса. Далее иРНК перемещается в цитоплазму и транслируются с образованием белков вируса. Белки сердцевины вируса собираются вокруг прегенома.

На матрице пре-генома синтезируется минус- нить ДНК под действием РНК – зависимой ДНК – полимеразы вируса.

На образовавшейся минус- нити ДНК синтезируется плюс- нить ДНК.

На Hbs – содержащих мембранах эндоплазматической сети или аппарата Гольджи формируется оболочка вируса. Вирион выходит из клетки эндоцитозом.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.


Репродукция фитопатогенных вирусов – процесс размножения вирусов растений в чувствительных к ним клетках [2] .

Вирусы растений накапливаются в зараженных клетках в огромном количестве. В частности в одной клетке волоска табака содержится 6*10 7 частиц вируса табачной мозаики. При этом на долю этих частиц приходится 10% сухого веса инфицированного растения [1] .

Основные этапы репродукции фитопатогенных вирусов

По способу размножения фитовирусы, как и вирусы вообще, отличаются от клеточных микроорганизмов. Последние, размножаются бинарным делением взрослых клеток. При этом клетка сохраняет целостность на всех стадиях размножения. Вирус, попадая в клетку, частично или полностью распадается на макромолекулы и высвобождает нуклеиновую кислоту – носителя генетической информации. Позднее, вследствие трансляции вирусного генома или информационной РНК происходит репликация нуклеиновой кислоты вируса и формирование вирус-специфических белков. Трансляция, как и при репродукция вируса, использует аппарат клеток растения-хозяина. В результате наблюдается репликация генома, возникают специфические белки вируса. На заключительном этапе, из вновь синтезированной нуклеиновой кислоты и вирусных белков собирают новые вирусные частицы [2] [1] .

По способу трансляции генетической информации вирусы растений делят на две группы:

  1. Адсорбция – проникновение вируса в клетку. Наблюдается в местах мельчайших ранений клеточной стенки. Происходит путем взаимодействия рецепторов клетки и вируса[3][1] .
  2. Протеолиз – процесс освобождения РНК от белковой оболочки (капсида). Происходит внутри клетки вблизи от поверхности. Длится от трех до шести часов [3][1] .
  3. Эклипс-стадия (темновая стадия) – перестройка органоидов клетки для работы на репродукцию вируса[3][1] .
  4. Репликация – размножение освобожденной РНК вируса. Синтез осуществляется при помощи фермента РНК-репликазы, выступающего катализатором образования РНК из нуклеотидов. Информационной РНК для образования данного фермента, в данном случае, служит сама вирусная РНК. С помощью РНК-репликазы на вирусной РНК идет построение комплиментарной ей спирали. Таки образом образуется двухспиральная репликатичная форма РНК. По типу матричного синтеза на минус-спиралях идет построение плюс-спиралей, то есть новых вирусных РНК. Одновременно идет синтез структурного белка вируса на цитоплазменных рибосомах с одновременным разрушением старых клеточных транспортных РНК. Рибосомы под влиянием вирусных составляющих соединяются в полисомы и более активно синтезируют вирусный белок [3][1] .
  5. Образование вирионов и их выход из пораженной клетки. Отмечается, что агрегация вирусных частиц – явление спонтанное и происходит в результате случайных встреч молекул вирусной РНК и белка [3][1] .

Считается, что репликация и сборка вирионов происходит в различных местах клетки. Месторасположение этого процесса зависит от вида вируса. Это может происходить в хлоропластах, митохондриях, ядре, ядрышке, цитоплазме. Сложные вирусы (с суперкапсидом) приобретают липидосодержащие оболочки при прохождении нуклеокапсида (агрегата капсида и РНК) через мембрану хозяина. Зрелые частицы вируса могут выходить из клеток по плазмодесмам (ближний транспорт фитовирусов). При этом оболочка клетки не повреждается [1] .

Особенности репродукции некоторых вирусов

Вирусы с двухцепочечной РНК

В основной массе геномы многих фитовирусов представлены одной молекулой однонитевой РНК. Параллельно установлены вирусы растений с двухцепочечной РНК (вирусы раневых опухолей). Для таких вирусов матрицей синтеза мРНК служит двухцепочечная структура. Обе цепи сохраняют ее целостность, а их основания остаются спаренными. С помощью РНК-транскрипазы из синтезирующихся мРНК формируются новые молекулы двухцепочечного генома [1] [3] .

ДНК-содержащие вирусы

Геном в виде ДНК имеют два семейства фитовирусов: Caulimoviridae (днДНК) и Geminiviridae (онДНК). Генетическая информация вирусной ДНК всех типов, вероятнее всего реализуется через мРНК [1] .

Вирусы с многокомпонентным геномом

Некоторые вирусы растений обладают многокомпонентным геномом. К таким относятся представители семейства Bromoviridae, род Alfamovirus, род Bromovirus, род Cucumovirus [1] .

Данные вирусы имеют трехкомпонентный геном и способны инфицировать растения, только при наличии его полного состава, то есть всех трех компонентов. При этом необязательно, что информация в составляющих частях генома распределена равномерно. В частности, у вируса погремковости табака большой компонент генома содержит информацию о его трасляции [1] .

Отмечается, что на образование вирионов расходуется 10–20% синтезированного вирусного материала. Большая часть исходного материала (РНК и белка) является вспомогательным и облегчает формирование зрелых частиц [1] .


Репродукция вируса – это процесс размножения вирусных частиц в чувствительных к ним клетках. Репродуцируются только вирулентные вирусы, обладающие высокой степенью патогенности [3] .

Содержание:

Общие закономерности репродукции вируса

К самостоятельному размножению вирусы не способны. Синтез вирусных белков и воспроизведение копий вирусного генома обеспечиваются биосинтетическими процессами клетки-хозяина. Для вирусов характерен дизъюнктивный (разобщенный) тип репродукции. Он осуществляется при взаимодействии вируса с инфицируемой клеткой. В этом случае белковые молекулы и нуклеиновые кислоты образуются отдельно друг от друга. После чего происходит сборка дочерних популяций [3] .

Особенности репродукции вирусов зависят от типа вирусного генома. Однако отмечается существование целого ряда общих закономерностей репродукции вируса:

  1. Все вирусы, содержащие молекулу РНК, кроме вирусов гриппа и ретровирусов, репродуцируются в цитоплазме клетки. Геномы ретровирусов и вирусов гриппа при репродукции проникают в ядро клетки-хозяина [2] .
  2. Все вирусы, содержащие молекулу ДНК, кроме вирусаоспы репродуцируются в ядре и в цитоплазме клетки. В ядре происходит транскрипция и репликация вирусных нуклеиновых кислот, а в цитоплазме – трансляция вирусных белков и сборка дочерних вирионов. Вирусоспы размножается только в цитоплазме клетки [2] .
  3. Процесс синтеза нуклеокапсидных белков происходит на свободных полирибосомах (не связанных с мембраной). Процесс синтеза суперкапсидных белков проходит на рибосомах, ассоциированных с мембранами [2] .
  4. Белки вирусов после образования подвергаются протеолитическому процессингу (разрезанию или расщеплению) [2] .
  5. Суперкапсидные белки оболочечных вирусов при транспортировке к клеточной мембране проходят гликозирование (присоединении к полипептиду углеводных остатков) [2] .

Репродукция вируса - Этапы репродукции (жизненного цикла) вируса

Этапы репродукции (жизненного цикла) вируса

Репродукция вируса - Этапы репродукции (жизненного цикла) вируса

1. Адсорбция вируса на мембране клетки.; 2. Проникновение вируса в клетку.; 3. Депротеинизация.; 4. Синтез компонентов вирусов.; 5. Формирование дочерних вирионов.; 6. Выход вирионов [2] .

Этапы репродукции вируса

Репродукцию или жизненный цикл вируса делят на шесть последовательных этапов:

  1. Адсорбция на мембране клетки [2] .
  2. Проникновение в клетку [2] .
  3. Депротеинизация [2] .
  4. Синтез компонентов вирусов[2] .
  5. Формирование дочерних вирионов[2] .
  6. Выход вирионов[2] .

Репродукция вируса - Процесс адсорбции вириона на поверхности клетки

Процесс адсорбции вириона на поверхности клетки

Репродукция вируса - Процесс адсорбции вириона на поверхности клетки

1. Вирион.; 2. Клеточный рецептор.; 3. Прикрепительный белок; 4. Клеточная мембрана [2] .

Адсорбция на мембране клетки

Адсорбция вириона на мембране клетки идет по пути взаимодействия вирусного белка (антирецептора) с клеточными рецепторами. Для каждого вируса на клеточной мембране существуют специфические рецепторы, с которым он и связывается. По химической природе рецепторы, фиксирующие вирус, могут являться мукопротеиновыми либо липопротеиновыми. Распознавание клеточных рецепторов осуществляют капсидные или суперкапсидные белки вириона [2] .

Антирецепторы вирионов являются прикрепительными белками. Они могут иметь форму шипов, нитей, грибовидных структур [2] .

В самом процессе адсорбции большую роль играют электрические заряды. Вирусы обычно отрицательно заражены, а участки клеточной стенки – положительно [2] .

Процесс адсорбции занимает от пяти до девяноста минут. Количество специфических рецепторов на поверхности одной клетки 10 4 –10 5 [2] .

Репродукция вируса - Проникновение вируса в клетку (Путь I)

Проникновение вируса в клетку (Путь I)

Репродукция вируса - Проникновение вируса в клетку (Путь I)

Слияние вирусной оболочки с клеточной мембраной

1. Вирион.; 2. Инфицируемая клетка.; 3. Ядро [2] .

Проникновение в клетку

Путь проникновения вируса в клетку зависит от наличия оболочки у вириона [2] . Существует два пути:

  1. Путь I – слиянии вирусной оболочки с клеточной мембраной [2] .
  2. Путь II – рецептор-опосредованный эндоцитоз [2] .

Путем слияния суперкапсида с клеточной мембраной (путь I) в клетку проникают оболочечные вирусы. Этот процесс обусловлен наличием специфических белков слияния. При этом наблюдается высвобождение нуклеокпсида в цитоплазму клетки [2] .

Путем рецептор-опосредованного эндоцитоза (путь II) в клетку проникают безоболочечные вирусы. Первоначально вирион связывается со специфическими рецепторами, расположенными на клеточной поверхности. Затем наблюдается инвагинация (впячивание) клеточной мембраны, образование эндосом (внутриклеточных вакуолей) и их слияние с лизосомами. В заключении, вирусный геном в цитоплазме клетки освобождается из эндосомы [2] .

Репродукция вируса - Проникновение вируса в клетку (Путь II)

Проникновение вируса в клетку (Путь II)

Репродукция вируса - Проникновение вируса в клетку (Путь II)

1. Вирион.; 2. Клетка.; 3. Эндосома.; 4. Ядро [2] .

Депротеинизация

Процесс депротеинизации (освобождения вирусной нуклеиновой кислоты – раздевание вируса) осуществляют протеолитические ферменты клетки (протеазы и липазы) [2] .

Смысл этого процесса состоит в удалении капсидов (вирусных оболочек). Конечные продукты раздевания вируса – сердцевины, нуклеокапсиды, нуклеиновые кислоты. Некоторые вирусы в качестве конечного продукта представлены нуклеиновыми кислотами, связанными с внутренним вирусным белком. После прохождения этапа депротеинизации выделить вирус из культуры клеток невозможно. Такое положение называют теневой фазой или фазой эклипса (затмения). В этот период вирус перестает существовать в качестве оформленного вириона [2] .

Синтез компонентов вируса

Синтез компонентов вирусов заключается в репликации вирусных нуклеиновых кислот и синтезе вирусных белков. Под репликацией понимается процесс самовоспроизведения нуклеиновых кислот, генов и хромосом, в основе которого лежит ферментативный синтез ДНК или РНК, проходящий по матричному синтезу [1] .

Место синтеза компонентов дочерних вирионов зависит от типа генома:

  • реализация генетической информации у ДНК-содержащих вирусов идет по пути: ДНК → транскрипция → иРНК → трансляция → белок;
  • реализация генетической информации у +РНК-содержащих вирусов идет без этапа транскрипции: +-РНК → трансляция → белок;
  • реализация генетической информации у РНК-содержащих вирусов с негативным геномом идет по схеме: минус-РНК → транскрипция → иРНК → трансляция → белок;
  • РНК-содержащие ретровирусы идут по следующему пути передачи информации: РНК → обратная транскрипция → ДНК → транскрипция → иРНК → трансляция → белок [2] .

ДНК-содержащий вирус, проникший в цитоплазму, транспортирует нуклеокапсид к ядру клетки. Вирусная ДНК проникает в структуры клеточного ядра, где и совершается транскрипция или переписывание информации с ДНК на РНК при помощи клеточной полимеразы. Исключение – вирус оспы. Несмотря на то, что он относится к ДНК-содержащим, но его транскрипция протекает в цитоплазме при участии ДНК-полимеразы, проникающего в клетку в составе вириона [2] .

Результатом транскрипции является и то, что на одной из нитей ДНК синтезируется иРНК. В последствии, она перемещается в цитоплазму клетки и запускает процесс трансляции – перевода генетической информации с иРНК на последовательность аминокислот в вирусных белках [2] .

Синтез белков наблюдается в рибосомах клетки-хозяина. Одновременно в ядре клетки протекает репликация (образование) дочерних нуклеиновых кислот на матрице материнской ДНК [2] .

Синтезированные дочерние молекулы ДНК в составе нуклеокапсида путем почкования перемещаются из ядра клетки в цитоплазму. При этом они захватывают фрагмент ядерной мембраны. В цитоплазме процесс репродукции завершается [2] .

РНК-содержащие ретровирусы отличаются тем, что после проникновения в клетку генетическая информация с их РНК переписывается на ДНК, то есть с помощью фермента ревертаза происходит обратная транскрипция. Ревертаза так же попадает в клетку вместе с ретровирусом. Вновь образованная ДНК интегрирует с клеточным геномом и в его составе участвует в образовании иРНК, необходимой для синтеза вирусных белков. Транскрипцию интегрированной ДНК в составе клеточных геномов (переписывание информации с ДНК на РНК) осуществляет клеточная ДНК-зависимая РНК полимераза [2] [4] .

Формирование дочерних вирионов

Сборка дочерних вирионов возможна только при узнавании вирусных нуклеиновых кислот и белков, и самопроизвольном их соединении друг с другом. На мембранах эндоплазматического ретикулума взаимодействуют нуклеиновая кислота и белки просто устроенных вирусов, что приводит к образованию упорядоченной структуры [2] .

Сложно устроенные вирусы характеризуются многоступенчатой сборкой. Первоначально их нуклеиновые кислоты взаимодействуют с внутренними белками, образуя нуклеокапсиды. Затем нуклеокапсиды выстраиваются с внутренней стороны клеточной мембраны под участками модифицированными оболочечными вирусными белками. В результате происходит самосброска вирионов. Количество зрелых вирионов, сформировавшихся в клетке, варьирует от 10 до 10000 и более [2] .

Выход вирионов

Высвобождение дочерних вирионов из клетки может быть осуществлено двумя способами:

  • взрывной – путем лизиса клетки;
  • путем почкования[2] .

Путь лизиса клетки тесно связан ее деструкцией. Он характерен для безоболочечных вирусов, не имеющих суперкапсидной оболочки (суперкапсида) [2] .

Выход путем почкования характерен для оболочечных вирусов. При этом клетка-хозяин некоторое время сохраняет жизнеспособность. Содержащие суперкасид вирусы, высвобождаются в течении 2–6 часов. В начале суперкапсидные белки устанавливаются на наружной поверхности мембраны в виде своеобразных шипов, вытесняя клеточные белки. Затем через модифицированную клеточную мембрану проходит нуклеокапсид с образованием суперкапсида [2] .

Читайте также: