Откуда взялся экранный вирус

Обновлено: 25.04.2024

Тимур Исмаилович Маджидов — кандидат химических наук, старший научный сотрудник научно-исследовательской лаборатории хемоинформатики и молекулярного моделирования Химического института имени А. М. Бутлерова Казанского федерального университета. Область научных интересов — хемоинформатика, квантовая и вычислительная химия, большие данные в химии, использование методов машинного обучения и искусственного интеллекта в химии.

С начала текущего года весь мир следит за распространением коронавируса, который в декабре 2019 г. вызвал эпидемию в Китае, а затем перекинулся и на другие страны. Поскольку эпидемия охватила весь мир * , 30 января Всемирная организация здравоохранения объявила вспышку нового коронавируса (поначалу именовался 2019-nCoV) чрезвычайной ситуацией в области общественного здравоохранения, имеющей международное значение, а 11 марта — пандемией. Серьезность ситуации требует искать решение проблемы всеми возможными путями.

Китайские исследователи оперативно расшифровали и охарактеризовали геном нового коронавируса, обнаружив большое сходство с вирусом SARS-CoV (аббревиатура от англ. severe acute respiratory syndrome — ‘коронавирус тяжелого острого респираторного синдрома’), который был причиной эпидемии в 2002–2003 гг., а также с двумя коронавирусами летучих мышей, что послужило основанием считать их природным резервуаром нового коронавируса, переименованного, соответственно, в SARS-CoV-2 [1–3]. Еще до публикации этих результатов его нуклеотидная последовательность была депонирована в базе данных GenBank. Сейчас на этом и подобных порталах собраны данные уже более 170 геномов пандемического коронавируса из образцов, полученных в разных странах. Геномные исследования SARS-CoV-2 позволяют разрабатывать тесты для его выявления, строить филогенетические деревья, чтобы проследить его происхождение и эволюцию, и т. д. Кроме того, изучаются 3D-структура белков, механизмы инфицирования, ищутся подходы для создания вакцины, моноклональных антител и, конечно, малых молекул (лекарств).

Все результаты исследований незамедлительно публикуются в открытом доступе на сайтах научных журналов (Nature, Science, The Lancet, Journal of Medical Virology) и препринтов (BioRxiv, MedRxiv и ChemRxiv). За последние два месяца только на BioRxiv опубликовано более 80 статей о самых разных аспектах изучения SARS-CoV-2 и борьбы с ним. Важно подчеркнуть, что на всех сервисах размещено объявление: статьи не прошли рецензирование и не должны рассматриваться как окончательные выводы, рекомендации по лечению или профилактике, а также не должны освещаться в СМИ как доказанная информация. Мы поддерживаем эти предостережения и призываем рассматривать нашу публикацию как научно-просветительный материал, изложенные в нем данные как предварительные, требующие дополнительного подтверждения, а сведения по лечению и профилактике COVID-2019 черпать только из официальных рекомендаций.

Откуда он взялся?

Впервые коронавирус человека был выделен в 1965 г. от больного ОРВИ, а вскоре выяснилось, что коронавирусов много и циркулируют они не только среди людей, но и среди домашних и диких животных [4]. Коронавирусы не считались опасными патогенами человека до тех пор, пока в 2002 г. мир не столкнулся с эпидемией SARS, которая началась в Китае и распространилась на 37 стран, поразив более 8 тыс. человек и погубив 774 (смертность более 9%) [5, 6]. В 2012 г. в Саудовской Аравии вспыхнула вторая эпидемия коронавируса, связанного с ближневосточным респираторным синдромом (англ. Middle-East respiratory syndrome, MERS), которым переболели почти 2,5 тыс. человек, 858 из которых погибли (смертность более 34%) [4]. После этих двух эпидемий стало ясно, что коронавирусы способны преодолевать межвидовые барьеры и переходить от животных к людям [7]. Эксперты предупреждали, что рано или поздно может возникнуть новая вспышка [8]. Это и случилось в 2019 г. и снова в Китае, но никто не ожидал, что она охватит весь мир, т.е. дорастет до размеров пандемии.

Во всех трех случаях естественным резервуаром коронавирусам послужили летучие мыши. Известно, что SARS-CoV изначально циркулировал среди подковоносых летучих мышей (Rhinolophus sinicus), а на человека перекинулся от малайской пальмовой циветты (Paradoxurus hermaphroditus) [9].

Интенсивные исследования нового коронавируса позволили Международному комитету по таксономии вирусов (International committee on taxonomy of viruses) определить место SARS-CoV-2: его отнесли к роду Betacoronavirus семейства Coronaviridae отряда Nidovirales царства Riboviria (рис. 1) [3].

Рис. 1. Филогенетическое древо коронавирусов, циркулирующих среди летучих мышей или людей, в том числе пяти видов рода Betacoronavirus, связанных с тяжелым острым респираторным синдромом [3]. Красным цветом выделены зоонозные вирусы, проявившие патогенность к людям; коричневым — вирусы, циркулирующие среди людей и вызывающие у них незначительные респираторные проявления. Звездочками обозначены два вида коронавирусов, демаркация и названия которых ожидают одобрения Международного комитета по таксономии вирусов, так что они не выделены курсивом. SH — достоверность ветви, определенная по тесту Симодайра — Хасэгава (Shimodaira — Hasegawa)

Рис. 2. Электронная микрофотография зрелых вирионов SARS-CoV-2 (а) и его 3D-модель (б). Изображения взяты из общедоступных библиотек Центров по контролю и профилактике заболеваний и Национального института аллергологии и инфекционных заболеваний США

По геномной последовательности SARS-CoV-2 — близкий родственник SARS-CoV, но отличается от него и MERS-CoV меньшей смертностью, хотя и гораздо большей заразностью. Это и позволило ему распространиться гораздо шире, чем в две предыдущие коронавирусные эпидемии. Очевидно, что против SARS-CoV-2 нужны специфические лекарства.

Как найти лекарство?

Несмотря на 15-летнюю историю контакта с опасными коронавирусами и ожидание новых вспышек, человечество не успело разработать специфического противокоронавирусного средства [14]. Даже более или менее испытанных терапевтических стратегий мало. Во время прежних вспышек применяли рибавирин и интерферон-альфа [6]. Эти препараты широкого спектра действия. В случае вирусов это означает, что эффект не гарантирован, а побочные действия не вполне предсказуемы. Впрочем, рибавирин продемонстрировал эффективность против SARS-CoV [15], но нужны более крупные и тщательные исследования.

Комбинация препаратов для лечения СПИДа (ингибиторы протеазы ВИЧ) — лопинавира с ритонавиром — оказалась эффективна в эксперименте на клеточной культуре и в клинике [15], и именно ее китайские ведомства, ответственные за борьбу с коронавирусом, официально рекомендуют использовать для лечения COVID-19 [16].

Очевидно, что имеющегося арсенала крайне мало. Фармацевтическая отрасль оказалась застигнута врасплох, хотя ученые и прогнозировали появление нового коронавируса. Необходимо срочно разрабатывать новые лекарства для борьбы с инфекцией. На какие мишени они должны быть нацелены?

Рис. 4. Наглядное изображение генома коронавируса и его структурных элементов — возможных терапевтических мишеней [14]

Компьютерный дизайн лекарств

Главная идея дизайна молекул против коронавируса заключается в том, что времени на создание принципиально нового лекарства попросту нет. Даже если кандидата найти очень быстро, что далеко не факт, доклинические и клинические испытания продлятся годы.

К счастью, смертность от COVID-19, по сравнению с SARS и MERS, весьма невелика, но это накладывает существенные требования к безопасности потенциального лекарства. Риск от применения лекарства должен быть существенно ниже, чем от самой болезни. А значит, лекарство должно быть безопасным. Это сильно осложняет поиск: есть вероятность, что на этапе клинических испытаний будет выявлен слишком большой риск от лекарства, несоизмеримый с опасностью болезни.

Отсюда возникла идея — не надо разрабатывать новые лекарства! Нужно использовать старые, т.е. найти такие соединения, доклинические испытания которых проведены, безопасность доказана, и остается только проверить активность против SARS-CoV-2. Это называется перепрофилированием лекарств. В связи с этим можно выделить три стратегии разработки лекарства.

Таким образом, правильного пути нет. Каждый имеет достоинства и недостатки, но в целом эти три стратегии взаимодополняющие и способны помочь человечеству побороть COVID-19. По этой причине работы ведутся во всех направлениях.

Рис. 5. Наложение недавно расшифрованной протеазы SARS-CoV-2 (розовая, связана с красным блокатором) на гомологичную протеазу SARS-CoV (голубая, связана с синим ингибитором). Обратите внимание на сходство структуры протеаз и положения блокаторов в активном центре (хотя это разные блокаторы). Изображение сделано авторами статьи в UCSF Chimera [23] на основе структур PDB 6lu7 (DOI: 10.2210/pdb6LU7/pdb) и 2gx4 (DOI: 10.2210/pdb2GX4/pdb)

В общем, виртуальный скрининг и докинг показали свою привлекательность в деле борьбы с коронавирусом. Работы с использованием этого инструмента продолжаются очень активно, правда есть и проблема: пока у этих работ нет экспериментального подтверждения, но это дело времени. Нужно помнить, что в большинстве лабораторий этого штамма еще просто нет и обучение работе с ним займет время. В этом смысле создание международных консорциумов представляется особенно перспективным, и они в настоящее время уже формируются.

Перепрофилирование в пробирке

Насколько бы докинг ни был мощным, только эксперимент есть критерий истины. Молекулярная динамика более точна, но это крайне ресурсоемкий метод, и он не годится для скрининга больших библиотек. Производительность его низка. А что, если провести аналогичный скрининг не в компьютерной модели, а in vitro? На настоящей протеазе вируса? Одна большая группа специалистов провела такой масштабный эксперимент [25]. Мишенью вновь была та же самая M pro . Скрининг проводился на основе измерения связывания соединения с M pro методом на основе ферстеровского резонансного переноса энергии (FRET), часто применяющимся в молекулярной биологии. Причем размеру библиотеки могли бы позавидовать даже исследователи, проводившие куда менее затратные компьютерные исследования: более 10 тыс. соединений, среди которых одобренные лекарства, препараты, проходящие клинические испытания, и натуральные соединения. Так что по производительности этот биологический скрининг не уступал некоторым работам в области виртуального скрининга.

Любопытно, что компьютерные методы на основе докинга не выделили ни одну из этих молекул! Но их вполне могло не быть в базах данных, использованных исследователями. А эбселен и N3 вдобавок являются сложными для докинга молекулами. В состав первого входит селен, параметры которого в силовых полях для расчета энергии докинга недостаточно надежны. А молекула N3 представляет собой ковалентный ингибитор — т.е. она ковалентно связывается с белком по реакции Михаэля. Использованные исследователями методы докинга этого учесть не могут, хоть и существуют специальные алгоритмы для ковалентного докинга.

Так что работа этой группы, скорее, убеждает в необходимости должного подхода к компьютерному скринингу и его комбинирования с экспериментальными исследованиями.

Искусственный интеллект на тропе войны

Докинг — это все же просто вычислительная методика, работающая по явно заданному компьютерному алгоритму. А как насчет более передовых технологий?

Методология довольно впечатляющая и очень напоминает таковую в предыдущем исследовании этой группы по созданию ингибиторов DDR-киназ [29], опубликованном в журнале Nature Biotechnology (что говорит само за себя). В настоящее время группа занимается синтезом соединений для дальнейшей экспериментальной проверки, так что — ждем окончательных результатов и надеемся, что они будут хорошими!

Далее из 300 существующих ингибиторов ААК1 отобрали 40 одобренных для применения в клинической практике. Исключили препараты, обладающие выраженными побочными эффектами или требующие высоких дозировок лекарств. Среди шести высокоактивных ингибиторов особенно интересным является ингибитор янус-киназ бариситиниб (изначально разработанный для лечения ревматоидного артрита). Он ингибирует не только ААК1, но и циклин G-ассоциированную киназу (GAK), которая также участвует в эндоцитозе. Авторы полагают, что эта молекула может использоваться для профилактики и лечения коронавирусной инфекции. Идея хорошая, и — в кои-то веки — связана не с протеазой вируса, а с другой мишенью. Но это лишь модельные данные — их еще надо проверить.

По этим работам был написан весьма интересный критический разбор [32]. Обе работы критиковались в основном за очевидность. Так, критики считали, что работа сотрудников BenevolentAI — это скорее продвинутый научный поиск, доступный и человеку. Зачем здесь искусственный интеллект? Его триумфа здесь особо не просматривается. Но, на наш взгляд, сама по себе разработка, где искусственный интеллект собирает граф научных знаний с потенциальным медицинским применением, заслуживает внимания. Хотя бы с технической точки зрения. Такой подход может оказаться полезным в будущем — время покажет. Повторимся, что все данные пока предварительные.

Таблица. Кандидаты в блокаторы протеазы коронавируса (из [35]; с изменениями)

Коричневым цветом выделены ингибиторы вирусных протеаз; фиолетовым — ингибиторы факторов свертывания крови (антикоагулянты); синим — ингибиторы АПФ; желтым — ингибиторы DPP4; зеленым — ингибиторы других протеаз человеческого организма; белым — другие препараты / вещества.

Группа корейских ученых [38] обучила нейронную сеть предсказывать константу связывания молекулы с белком и провела поиск активных молекул среди коммерчески доступных. В результатах этого исследования оказалось сразу три препарата против ВИЧ — ритонавир, который уже был рекомендован для терапии коронавирусной инфекции (в сочетании с лопинавиром), а также атазанавир и эфавиренц. Немного разнообразия в эту подборку внесло противовирусное средство ганцикловир (но — от цитомегаловирусной инфекции).

Не протеазой единой.

Но не все так просто. Протеазы могут различаться по структуре и механизму катализа. Например, протеаза ВИЧ — аспартильная, а протеаза вируса гепатита C — сериновая [39], т.е. они относятся к разным классам и имеют разный механизм действия. Каталитический домен протеазы коронавируса по укладке похож на химотрипсин, участвующий в пищеварении и также являющийся сериновой протеазой [40]. При таком разнообразии будет удачей, если ингибитор от одной протеазы подойдет к другой и будет эффективно ее блокировать. И искусственный интеллект здесь может послужить неплохим подспорьем, позволяя прикинуть шансы.

Кроме того, при недостатке экспериментальной информации самый очевидный путь может оказаться неверным. Например, мы уже знаем, что лопинавир с ритонавиром эффективны против коронавирусов, но связано ли это именно с протеазой?

Рассмотренные выше исследования давали положительный эффект, потому что в них протеаза была единственной мишенью. Этот момент может быть источником ошибки. А что, если сделать скрининг по всем возможным мишеням в составе коронавируса, которые изображены на рис. 4? Этот рисунок взят из статьи [14], авторы которой уже провели такую масштабную работу. Построив по гомологии модели всех белков коронавируса, они провели скрининг существующих лекарств и натуральных соединений методом докинга.

Для ритонавира было найдено две возможные мишени, для лопинавира — даже четыре, но главной протеазы среди них нет! Зато рибавирин — аналог нуклеозида, для которого ожидаемо действие на репликацию и синтез белка, оказался лидером по связыванию с папаин-подобной протеазой PL pro . Ему на пятки наступает валганцикловир — противогерпетическое средство, и тоже нуклеозидной природы! Правда, результаты скрининга против M pro немного перекликаются с результатами команды из Университета Мичигана: там все же представлены препараты против ВИЧ — ампренавир и блокатор нейтральной эндопептидазы кандоксатрил. Этих данных достаточно, чтобы показать, что компьютерные технологии способны предложить нам много неожиданных решений в борьбе с коронавирусом. Будут ли они эффективны — покажет время, так как в любом случае необходима экспериментальная проверка.

Ситуация с разработкой новых антикоронавирусных лекарств быстро меняется. За время подготовки нашей статьи к печати группа Diamond Light Source (Великобритания) провела экспериментальный поиск небольших молекул — ингибиторов протеазы. Планируется на их основе создать новую высокоактивную молекулу. Кроме того, в базе PDB уже появились новые структуры белков коронавируса.

Тем временем. (вместо послесловия)

Идеи и разработка вакцин. Coalition for Epidemic Preparedness Innovations (CEPI), США, выделила трем компаниям 12,5 млн долларов для разработки вакцины от SARS-CoV: компаниям Moderna и Inovio, специализирующимся на создании вакцин, и Университету Квинсленда. Интересно, что подходы к вакцинам у всех трех получателей средств отличаются: первый делает вакцины на основе вирусной РНК, второй — на основе ДНК и третий специализируется на старой технологии с использованием вирусных протеинов. И уже есть первые успехи. Вакцина от коронавируса компании Moderna находится на первой стадии клинических испытаний в США. Испытания начались в марте 2020 г., их окончание планируется в июне 2021-го.

Несмотря на очевидные успехи поиска новых лекарств против COVID-19, клинические испытания вакцин и лекарственных препаратов займут значительное время. Так что профилактика заболевания в настоящий момент является единственным выходом.

* Эпидемиологическая обстановка в мире быстро меняется. За развитием текущей ситуации можно следить на сайте GitHub — хранилища данных, где собираются сведения для визуальной панели мониторинга SARS-CoV-2, управляемой Университетским центром системных исследований и инженерии имени Джонcа Хопкинса.


Обзор

Межвидовые контакты приводят к зоонозам

коллаж автора статьи (изображения из открытых источников)

Автор
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Надо признаться: мы не знаем, сколько вирусов существует в природе. Сейчас известно 6590 видов этих облигатных внутриклеточных паразитов. Но, по некоторым осторожным оценкам, только среди млекопитающих могут циркулировать сотни тысяч пока не описанных видов вирусов [1]. Отмечу, что разнообразие живого мира, мягко говоря, не ограничивается одним классом позвоночных животных. Безусловно, неизвестные вирусы способны вызывать заболевания человека. Самое грустное в том, что даже при наличии известной геномной последовательности (а чаще всего сиквенса нет — объект-то неизвестный!) невозможно сказать, насколько опасен тот или иной вирус. Таким образом, неизвестно даже примерное число вирусов, потенциально способных приводить к эпидемиям или пандемиям.

Чем чаще и тяжелее протекает инфекция, тем больше ресурсов вкладывают в изучение аспектов взаимодействия патогена с организмом человека. Из понимания этих деталей возникают идеи для разработки лекарств. Сейчас эффективно и специфично можно вылечить или предотвратить примерно 20 вирусных заболеваний, от которых погибало или погибает много людей (например полиомиелит и бешенство). Но наше знание даже, казалось бы, хорошо изученных объектов весьма обрывочно. Например, десятки, если не сотни, научных групп много лет активно изучают вирус полиомиелита. Структуру генома и вирусные белки описали десятилетия назад. А в 2019 году внезапно нашли еще один белок, облегчающий распространение вируса в клетках кишечного эпителия [2].

Сейчас активно разрабатывают методы специфической терапии еще примерно 20 болезней, которые вызывают вирусы (например ВИЧ или SARS-CoV-2). Но это лишь верхушка айсберга: около 200 других вирусов (например лиссавирус Иркут [3] или тоготовирус Бурбон [4]) приводят к заболеваниям человека разной степени тяжести. Про них по большей части можно сказать только то, что:

  • нуклеотидная последовательность известна;
  • это опасно.

Более того, есть страшная статистика. Когда человек умирает от вирусного энцефалита (воспаления головного мозга, вызванного вирусной инфекцией), в 60% случаев конкретный возбудитель заболевания остается неизвестным [5].

Возможность межвидовой передачи вирусов зависит от интенсивности контактов между разными животными [6]. Например, число контактов между людьми и летучими мышами считается небольшим: летучих мышей, как правило, не содержат в качестве домашних животных и не разводят для употребления в пищу. Тем не менее в некоторых регионах мира этих животных едят. В рационе почти половины жителей деревень на юге Камеруна присутствуют летучие мыши [7]. Летучие мыши этого региона — естественные резервуары филовирусов и хенипавирусов, вызывающих такие опасные заболевания, как лихорадка Эбола [8] и инфекция Нипах [9]. Таким образом, прямая передача вируса от летучих мышей к людям возможна, что периодически и происходит в разных уголках земного шара.

Возможность распространения патогена зависит от многих факторов. Например, вирус бешенства передается при ослюнении раневой поверхности. Такой способ делает возможным циркуляцию бешенства среди лисиц [15]. Но заражение человека бешенством от другого человека в литературе не описано — у людей в норме не принято кусать друг друга. По этой причине бешенство было и будет оставаться классическим примером зооноза для людей. Отмечу, что эта болезнь не всегда циркулировала в популяции плотоядных животных.

Какие бывают коронавирусы и все ли они опасны для человека?

Cемейство Coronaviridae включает в себя два подсемейства. Подсемейство Letovirinae состоит из единственного вида Microhyla letovirus 1, недавно обнаруженного в лягушках [17]. Подсемейство Orthocoronavirinae состоит из четырех родов: Alphacoronavirus (19 видов), Betacoronavirus (14 видов), Deltacoronavirus (7 видов), Gammacoronavirus (5 видов) (рис. 1). До введения греческих букв в качестве приставок (альфа-, бета-, гамма-) рода называли классификационными группами номер 1, 2 и 3 соответственно [18]. После пересмотра номенклатурных деталей описали четвертый род вирусов, который по аналогии назвали дельтакоронавирусами. Коронавирусы могут поражать разных позвоночных животных (куриц, индеек, собак, свиней, дельфинов, китов, грызунов, летучих мышей, верблюдов и других).

Orthocoronavirinae

Рисунок 1. Филогенетические взаимоотношения избранных представителей подсемейства Orthocoronavirinae. Названия вирусов, описанных у человека, выделены жирным шрифтом.

Неизвестно, какие из коронавирусов потенциально способны распространиться в нашей популяции, а какие — нет. Более того, непонятна даже доля уже обнаруженных коронавирусов: тут можно предположить любое значение в диапазоне между 0 и 100 процентами. При этом даже родственные коронавирусы могут распространяться между людьми с разной эффективностью. Например, SARS-CoV и SARS-CoV-2 принадлежат к одному виду коронавирусов [19]. SARS-CoV — это аббревиатура от Severe Acute Respiratory Syndrome CоronaVirus, то есть вызывающий тяжелый острый респираторный синдром коронвирус (ТОРС-КоВ). После вспышки атипичной пневмонии 2002–2004 годов у диких животных обнаружили сотни вирусов, которые, согласно филогенетическому анализу, принадлежали к этому же виду. Совокупность таких патогенов обозначили как родственные SARS-CoV. К февралю 2020 года стало понятно, что ранее неизвестный представитель SARS-related coronavirus вызывает человеческую респираторную инфекцию. Всемирная организация здравоохранения и международный комитет по таксономии вирусов предложили назвать коронавирусную инфекцию, начавшуюся в 2019 году, аббревиатурой COVID-19 (Coronavirus disease 2019), а возбудителя болезни — SARS-CoV-2 соответственно. Два человеческих SARS-коронавируса (то есть два варианта одного вида) приводят к разным заболеваниям. В летучих мышах циркулируют другие представители этого вида, случаи заражения человека которыми пока не описали. Пандемический потенциал этих вызывающих SARS коронавирусов неясен, но вызывает серьезные опасения. Сейчас известно, что люди заражались коронавирусами животных как минимум семь раз.

Естественным резервуаром предков бетакоронавирусов HKU1 и OC43 были грызуны, а предков альфакоронавирусов NL63 и 229E — летучие мыши (рис. 2) [32]. Промежуточными хозяевами OC43 считаются коровы, а 229E — альпаки [25]. Такие выводы получают при сравнении нуклеотидных последовательностей патогенов. Практически идентичные последовательности геномов вирусов, выделенных из разных видов животных, показывают недавнюю межвидовую передачу вируса. Отсутствие же очень похожих последовательностей вирусов в разных видах говорит лишь о незнании реального распространения патогена в окружающей среде.

Естественные резервуары коронавирусов

Рисунок 2. Летучие мыши — это естественные резервуары NL63, 299E, SARS-CoV, MERS-CoV, SARS-CoV-2, а грызуны — естественные резервуары HKU1 и OC43. Коровы, альпаки, циветы и верблюды — промежуточные хозяева OC43, 229E, SARS-CoV и MERS-CoV соответственно. Промежуточные хозяева HKU1, NL63 и SARS-CoV-2 неизвестны из-за неполноты знаний экологии коронавирусов.

рисунок автора статьи

В XXI веке произошло три случая заражения человека коронавирусами животных, в результате которых инфекция начала циркулировать в нашей популяции. Все три вируса относятся к бетакоронавирусам.

SARS-CoV

В 2002–2004 годах в Китае случилась вспышка атипичной пневмонии. Это заболевание назвали SARS. Эпидемия началась в ноябре 2002 года в южной провинции Гуандун, откуда быстро распространилась на соседние территории. Последний случай первой вспышки SARS зафиксировали в июне 2003-го. Всего заболело примерно 8000 человек, 9% погибло [33]. Следует отметить, что в конце 2003 года, спустя полгода после завершения эпидемии, в Китае произошли новые заражения SARS [33]. Вторую вспышку быстро локализовали, заболели всего четыре человека. Природным резервуаром SARS-CoV оказались летучие мыши. От летучих мышей заразились циветы — промежуточные хозяева коронавирусной инфекции, через контакт с которыми SARS-CoV попал в человеческую популяцию [32].

MERS-CoV

Второй случай возникновения способного к передаче от человека к человеку коронавируса произошел на Аравийском полуострове. Инфекцию назвали MERS, то есть Middle East Respiratory Syndrome, или ближневосточный респираторный синдром. Эту болезнь вызывает коронавирус MERS-CoV. Конкретное время начала эпидемии остается загадкой: называют сроки от ноября 2009 года до апреля 2012 года [34]. Всего, по данным ВОЗ, на 31 января 2020 года были лабораторно подтверждены 2506 случаев в 27 странах. Максимальное число заражений произошло в 2013–2015 годах, однако эпидемия продолжается до сих пор. Заболевание протекает как бессимптомно, так и с развитием тяжелой пневмонии, септическим шоком и полиорганной недостаточностью, что приводит к смерти примерно в 36% случаев [35]. Естественным резервуаром предковых форм MERS-CoV оказались летучие мыши, а промежуточными хозяевами — верблюды. Антитела к MERS-CoV у верблюдов обнаружили в архивном биологическом материале, собранном в 1983 году. Это значит, что не позднее 1983 года вирус попал в популяцию верблюдов, которые стали промежуточными хозяевами [32]. Заражение человека от верблюда вирусом MERS-CoV происходило много раз, то есть MERS продолжает оставаться инфекцией зоологического происхождения (зоонозом). Передача вируса от человека к человеку тоже возможна, но считается недостаточно эффективной для развития пандемии [35]. Тем не менее при нарушении эпидемиологических норм возможно успешное распространение MERS-CoV в человеческой популяции. Например, в 2015 году гражданин Южной Кореи путешествовал по странам Аравийского полуострова. После возвращения домой у пациента поднялась температура и появился кашель. Больной посетил три больницы, где находился в переполненных помещениях, ожидая своей очереди к врачу [36]. Всего в результате единственного завоза MERS-CoV в Южную Корею заболели 186 человек, 38 из них погибли. Эпидемия продлилась два месяца. Вспышку удалось локализовать за счет составления общей сети распространения инфекции, выявления возможных контактов и последующего карантина двух десятков тысяч человек [37].

SARS-CoV-2

Согласно филогенетическому анализу, SARS-CoV-2 попал в человеческую популяцию в конце ноября — начале декабря 2019 года [38], [39]. Судя по всему, это было единичное случайное событие. SARS-CoV-2 вызывает COVID-19 [40]. SARS-коронавирусы чаще всего циркулируют в летучих мышах, которые являются естественными резервуарами этих патогенов. Пандемический потенциал других SARS-коронавирусов неясен, но вызывает серьезные опасения.

Филогенетически ближайший к SARS-CoV-2 коронавирус RaTG13 обнаружили у летучей мыши в китайской провинции Юннань [41]. Число идентичных нуклеотидов между геномами этих двух вирусов составляет приблизительно 96%. Четыре процента различий — это довольно много. Последний общий предок SARS-CoV-2 и RaTG13 существовал десятки лет назад: за один год в геноме возникает примерно 0,08% мутаций. Некоторые участки поверхностного белка SARS-CoV-2 больше похожи на соответствующие регионы коронавируса, выделенного из панголинов [39]. Это говорит лишь о том, что сейчас не известны практически идентичные SARS-CoV-2 последовательности геномов вирусов, выделенных не из человека. Значит, промежуточный хозяин SARS-CoV-2, от которого заразился нулевой пациент, пока неизвестен. Отметим, что геномы коронавирусов, выделенных из цивет и верблюдов, практически идентичны геномам SARS-CoV и MERS-CoV соответственно. В результате промежуточный хозяин двух предыдущих человеческих коронавирусов был быстро определен. Есть надежда, что секвенирование вирома животных того региона, где началась пандемия, покажет промежуточного хозяина SARS-CoV-2 [39].

По разным оценкам, в результате предыдущей пандемии (гриппа в 2009 году) погибли десятки [42] или сотни [43] тысяч человек. А от все еще продолжающейся пандемии COVID-19 по данным на июль 2020 года умерли сотни тысяч пациентов. К сожалению, пока не наступило то время, когда можно было бы оценить итоговый урон, нанесенный человечеству этой коронавирусной инфекцией. В текущей ситуации больше всего пугает неизвестность нового патогена. Аспекты взаимодействия SARS-CoV-2 с хозяином на молекулярном, клеточном, тканевом, организменном и популяционном уровнях остаются предметом активного изучения, которое, по сути, началось лишь несколько месяцев назад. Очень многие детали неясны. Например, NL63 можно повторно обнаружить в пациенте спустя несколько месяцев после первого выздоровления [44]. Непонятно, насколько подобная особенность характерна для других человеческих коронавирусов. Другая деталь — существует феномен антитело-зависимого усиления (antibody-dependent enhancement, ADE) инфекции, при котором болезнь протекает тяжелее, если в организме уже есть антитела к возбудителю. Эту особенность наблюдали для вирусов Эбола, Зика, Денге, SARS-CoV [45]. Роль ADE в патогенезе COVID-19 сейчас активно изучается. Кроме того, для HKU1 и OC43 показана сезонность в распространении инфекции [46]. Но для SARS-CoV-2 сейчас отсутствует понимание вклада этого важнейшего фактора, прошло слишком мало времени. Для ответа на эти и многие другие вопросы потребуются годы кропотливой работы тысяч исследователей. Но, несмотря на то, что очень многого мы пока не знаем, некоторые факты уже известны. Например, концентрация SARS-CoV-2 при COVID-19 в верхних дыхательных путях на несколько порядков выше, чем у SARS-CoV при SARS [47]. Значит, SARS-CoV-2 эффективнее реплицируется в глотке, что приводит к более интенсивному распространению респираторной инфекции.

Заключение

- Зачем природе вирусы?

Вы спросите, а что же на 90% сформировало наш геном? Совсем древние пласты жизни, разного рода бактерии и простейшие, населявшие Землю миллиарды лет назад.

- Когда появились вирусы?

- Если я правильно понял, вирусы научили все живое размножаться, или, во всяком случае, научили делать это хорошо?

- Помогли научиться размножатся быстрее и сохранять при этом некоторые новообретённые функции.

Вирусы на самом деле не дают человечеству вымереть

- Вирусы могли залететь из космоса?

- Но он же может приспособиться, освоиться?

- Повторю, пока приспособится, его съедят.

- А было такое, что вирусы выкашивали стада динозавров, мамонтов?

- Биосфера – хрупкая оболочка, и на Земле периодически случаются вымирания. А бывают ли вымирания вирусов?

- Биосфера – совсем не хрупкая. А вот человеческая цивилизация – очень даже. Что касается вымирания вирусов, то такое несомненно случалась: есть вирусы, накрепко связанные всего с одним видом существ. Вымирает такой вид, исчезает и вирус. Это катастрофа для биосферы? Вряд ли.

- Можно ли сказать, что природа с помощью вирусов пытается регулировать численность человечества?

- Поскольку мы, люди, эволюционируем как единое целое вместе с огромным числом бактерий, простейших, вирусов и других существ (всего одна из каждых десяти наших клеток – собственно человеческая, и это не считая неклеточных вирусов), вся эта живая армада в обиду нас просто так не даст. Так что вирусы, скорее, наоборот, не позволяют человечеству быстро исчезнуть. К чему он так стремится, убивая окружающую среду.

Почему сейчас важно сидеть дома

Почему во время коронавируса важно сидеть дома? Вот что говорят об этом врачи

- Есть ли у вируса естественные враги?

- Почему вирусы живут себе в пределах одного вида, а потом вдруг перекидываются на другой?

- То есть вирусы и ускоряют эволюцию, и делают ее качественней? А раз так, может, и человек произошел от обезьяны из-за вируса?

- Даже этот вариант эволюции, нравится он нам или нет, нельзя исключить.

- Может ли человек создать вирус, например, нынешний коронавирус?

- Как изменится общество, когда эпидемия пройдет?

Так что, коли уж мы заговорили, что в мире надо поменять, улучшить, о чем пандемия заставила нас задуматься, то, увы, как и в XIX веке, в XXI-м надо взяться за элементарное просвещение. Объяснять, как устроена биосфера, как она эволюционирует, какую важную роль вирусы в этой эволюции играют. А от просвещения, глядишь, и власть имущие вместе с медийными персонами поумнеют. Но это я что-то размечтался.

Возрастная категория сайта 18 +


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: