Почему вирусы не фотосинтезируют

Обновлено: 24.04.2024

Главная задача биологии — это развитие представлений у человека о живых организмах, о многообразии видов, обо всех закономерностях развития живых существ, а также об их взаимодействии с окружающей природой. Предмет основы безопасности жизнедеятельности (ОБЖ) позволяет получить знания и умения, которые помогут сохранить жизнь и здоровье в опасных ситуациях. Эти ситуации всегда возникают неожиданно, но, тем не менее, большинство из них предсказуемы и к ним можно подготовиться заранее. ОБЖ учит нас предвидеть возможные опасности и минимизировать потери от той или иной ситуации. Сегодня мы сталкиваемся с новым видом вирусной опасности COVID-19,о котором поговорим с точки зрения биологии и ОБЖ.

Что такое вирус?

Вирус — это неклеточный инфекционный агент. Сегодня нам известно около 6 тысяч различных вирусов, но их существует несколько миллионов. Вирусы не похожи друг на друга и могут иметь как форму сферы, спирали, так и форму сложного асимметричного сплетения. Размеры вирусов варьируются от 20 нм до 300 нм.

Как устроен вирус?

В центре агента находится генетический материал РНК или ДНК, вокруг которого располагается белковая структура — капсид.
Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой, т.е. жировой структурой, которая защищает их от изменений окружающей среды.

Вирусолог Дэвид Балтимор объединил все вирусы в 8 групп, из которых некоторые группы вирусов содержат 1-2 цепочки ДНК. Другие же содержат 1 цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов производит себя в различных органеллах зараженной клетки.

Вирусы имеют определенный диапазон хозяев, т.е. он может быть опасен для одних видов и абсолютно безвреден для других. Например, оспой болеет только человек, а чумкой только некоторые виды плотоядных. Вирус не способен выжить сам по себе, поэтому активируется только в хозяйской клетке, используя ее ресурсы и питательные вещества. Цель вируса — создание множества копий себя, чтобы инфицировать другие клетки!

Вирусы

Как вирус попадает в организм?

  • через физические повреждения (например, порезы на коже)
  • путём направленного впрыскивания (к примеру, укус комара)
  • направленного поражения отдельной поверхности (например, при вдыхании вируса через трахею)
  • к эпителию слизистых оболочек (это например вирус гриппа)
  • к нервной ткани (вирус простого герпеса)
  • к иммунным клеткам (вирус иммунодефицита человека)

Биология. Рабочая тетрадь. 9 класс

Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сбором белка вируса. Этот процесс называется репликацией. И его основная цель — это захват территории. Во время репликации генетический материал вируса смешивается с генами клетки хозяина — это приводит к активной мутации самого вируса, а также повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает уже новые клетки, в то время как инфицированная ранее клетка продолжает производство.

Выход вируса

Вирус создал множество собственных копий, клетка оказывается изнуренной из-за использования ее ресурсов. Больше вирусу клетка не нужна, поэтому клетка часто погибает и новорожденным вирусам приходится искать нового хозяина. Это и есть заключительная стадию жизненного цикла вируса.

Скорость распространения вирусной инфекции

Размножение вирусов протекает с исключительно высокой скоростью: при попадании в верхние дыхательные пути одной вирусной частицы уже через 8 часов количество инфекционного потомства достигает 10³, а концу первых суток − 10²³.

Вирусная латентность

Как вирус распространяется?

  • воздушно-капельный (кашель, чихание)
  • с кожи на кожу (при прикосновениях и рукопожатиях)
  • с кожи на продукты (при прикосновениях к пище грязными руками вирусы могут попасть в пищеварительную и дыхательную системы)
  • через жидкие среды организма (кровь, слюну и другие)

Почему с вирусами так тяжело бороться?

Сегодня людям уже удалось победить некоторые вирусы, а некоторые взять под жесткий контроль. Например, Оспа (она же черная оспа). Болезнь вызывается вирусом натуральной оспы, передается от человека к человеку воздушно-капельным путем. Больные покрываются сыпью, переходящей в язвы, как на коже, так и на слизистых внутренних органов. Смертность, в зависимости от штамма вируса, составляет от 10 до 40 (иногда даже 70%), На сегодняшний день вирус полностью истреблен человечеством.

Кроме того, взяты под контроль такие заболевания, как бешенство, корь и полиомиелит. Но помимо этих вирусов существует масса других, которые требуют разработок или открытия новых вакцин.

Коронавирус

Виновником эпидемии, распространяющейся сегодня по миру, стал коронавирус, вирусная частица в 0,1 микрона. Свое название он получил благодаря наростам на своей структуре, своеобразным шипам. Внутри вируса спрятан яд, с помощью которого он подчиняет себе зараженный организм. Этот вирус воздействует не только на человека, но и на птиц, свиней, собак и летучих мышей. В настоящий момент выделяют от 30 до 39 разновидностей коронавирусной инфекции. Но для человека патогенно всего 6. И как любой другой вирус COVID-19 мутирует.

симптомы и признаки.jpg

К наиболее распространенным симптомам COVID-19 относятся повышение температуры тела, сухой кашель и утомляемость. К более редким симптомам относятся боли в суставах и мышцах, заложенность носа, головная боль, конъюнктивит, боль в горле, диарея, потеря вкусовых ощущений или обоняния, сыпь и изменение цвета кожи на пальцах рук и ног. Как правило, эти симптомы развиваются постепенно и носят слабо выраженный характер. У некоторых инфицированных лиц болезнь сопровождается очень легкими симптомами.

Сколько же может жить этот вирус вне организма? Все зависит от типа вируса и от той поверхности, на которую вирусы попали. В качестве примера было рассмотрено 3 вируса, по которым велись исследования. Изучали время, на которое может задерживаться вирус на различных поверхностях. Данные приведены в таблице.

Таблица

Поскольку пока не изобретено вакцины от COVID-19, в целях защиты от инфекции самым важным для нас является соблюдение гигиены.

Гигиена — раздел медицины, изучающий влияние жизни и труда на здоровье человека и разрабатывающая меры (санитарные нормы и правила), направленные на предупреждение заболеваний, обеспечение оптимальных условий существования, укрепление здоровья и продление жизни.

Сегодня следует соблюдать определенные правила гигиены:

  • Соблюдение режима труда и отдыха, не допускающего развития утомления и переутомления.
  • Выполнение условий, обеспечивающих здоровый и полноценный сон (свежий воздух, отсутствие шума, удобная постель, оптимальная продолжительность).
  • Правильное здоровое питание в соответствии с потребностями организма.
  • Комфортный микроклимат в жилище (температура, влажность и подвижность воздуха, естественная и искусственная освещенность помещений).
  • Содержание в чистоте тела и тщательный уход за зубами.
  • Спокойное и корректное поведение в конфликтных ситуациях.

профилактика.jpg


Некоторые организмы способны захватывать энергию солнечного света и использовать ее для производства органических соединений. Этот процесс, известный как фотосинтез, необходим для поддержания жизни, поскольку обеспечивает энергию как для производителей, так и для потребителей. Фотосинтезирующие организмы, также известные как фотоавтотрофы, являются организмами, способными к процессу фотосинтеза, и включают высшие растения, некоторые протисты (водоросли и эвглена), а также бактерии.

При фотосинтезе световая энергия преобразуется в химическую энергию, которая хранится в виде глюкозы (сахара). Неорганические соединения (диоксид углерода, вода и солнечный свет) используются для производства глюкозы, кислорода и воды. Фотосинтезирующие организмы используют углерод для получения органических молекул (углеводов, липидов и белков), которые необходимы для построения биологической массы.

Кислород, образующийся в виде побочного продукта фотосинтеза, используется многими организмами, включая растения и животных, для клеточного дыхания. Большинство организмов полагаются на фотосинтез, прямо или косвенно, для получения питательных веществ. Гетеротрофные организмы, такие как животные, большинство бактерий и грибов, не способны к фотосинтезу или продуцированию биологических соединений из неорганических источников. Таким образом, они должны потреблять фотосинтетические организмы и другие автотрофы для получения питательных веществ.

Первые фотосинтезирующие организмы

Мы очень мало знаем о самых ранних источниках и организмах фотосинтеза. Были многочисленные предложения относительно того, где и как возник этот процесс, но нет прямых доказательств для подтверждения любого из возможных происхождений. Имеются внушительные доказательства того, что первые фотосинтезирующие организмы появились на Земле примерно от 3,2 до 3,5 млрд лет назад в виде строматолитов, слоистых структур, подобных формам, которые образуют некоторые современные цианобактерии. Существует также изотопное доказательство автотрофной фиксации углерода около 3,7-3,8 миллиарда лет назад, хотя нет ничего, что указывало бы на то, что эти организмы были фотосинтезирующими. Все эти утверждения о раннем фотосинтезе весьма противоречивы и вызвали множество споров в научном сообществе.

Хотя считается, что жизнь впервые появилась на Земле около 3,5 миллиардов лет назад, вероятно, ранние организмы не метаболизировали кислород. Вместо этого они полагались на минералы, растворенные в горячей воде вокруг вулканических жерл. Возможно, что цианобактерии начали производить кислород в качестве побочного продукта фотосинтеза. По мере роста концентрации кислорода в атмосфере, он начал отравлять многие другие формы ранней жизни. Это привело к эволюции новых организмов, которые могли использовать кислород в процессе, известном как дыхание.

Современные фотосинтезирующие организмы

К основным организмам, которые перерабатывают энергию солнца в органические соединения относятся:

  • Растения;
  • Водоросли (диатомовые водоросли, фитопланктон, зеленые водоросли);
  • Эвглена;
  • Бактерии – цианобактерии и аноксигенные фотосинтетические бактерии.

Фотосинтез в растениях

Фотосинтез растений происходит в специализированных органеллах растительных клеток, называемых хлоропластами. Хлоропласты встречаются в листьях растений и содержат пигмент хлорофилл. Этот зеленый пигмент поглощает световую энергию, необходимую для процесса фотосинтеза. Хлоропласты содержат внутреннюю мембранную систему, состоящую из структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию. Двуокись углерода превращается в углеводы в процессе, известном как фиксация углерода или цикл Кальвина. Углеводы могут хранится в виде крахмала, используемого во время дыхания или для производства целлюлозы. Кислород, который образуется в процессе, выделяется в атмосферу через поры в листьях растений, называемые устьицами.

Растения и цикл питательных веществ

Растения играют важную роль в цикле питательных веществ, в частности, углерода и кислорода. Водные и наземные растения (цветущие растения, мхи и папоротники) помогают регулировать углерод в атмосфере, удаляя углекислый газ из воздуха. Растения также важны для производства кислорода, который выделяется в воздух как ценный побочный продукт фотосинтеза.

Водоросли и фотосинтез

Водоросли представляют собой эукариотические организмы, которые имеют характеристики как растений, так и животных. Как и животные, водоросли способны питаться органическим материалом в окружающей их среде. Некоторые водоросли также содержат органеллы и структуры, обнаруженные в клетках животных, такие как жгутики и центриоли. Как и растения, водоросли содержат фотосинтетические органеллы, называемые хлоропластами. Хлоропласты содержат хлорофилл – зеленый пигмент, который поглощает световую энергию для фотосинтеза. Водоросли также имеют другие фотосинтетические пигменты, такие как каротиноиды и фикобилины.

Водоросли могут быть одноклеточными или существовать в виде больших многоклеточных организмов. Они живут в различных местах обитания, включая соленые и пресные водные среды, влажную почву или породы. Фотосинтезирующие водоросли, известные как фитопланктон, встречаются как в морской, так и в пресноводной среде. Морской фитопланктон состоит из диатомей и динофлагеллятов. Пресноводный фитопланктон включает зеленые водоросли и цианобактерии. Фитопланктон плавает вблизи поверхности воды, чтобы получить лучший доступ к солнечному свету, который необходим для фотосинтеза. Фотосинтетические водоросли жизненно важны для глобального цикла веществ, таких как углерод и кислород. Они поглощают углекислый газ из атмосферы и генерируют более половины кислорода на планетарном уровне.

Эвглена

Эвглена – одноклеточные протисты, которые были классифицированы по типу эвгленовые (Euglenophyta) с водорослями из-за своей способности к фотосинтезу. В настоящее время, ученые считают, что они не являются водорослями, а приобрели свои фотосинтетические способности через эндосимбиотические отношения с зелеными водорослями. Таким образом, эвглена была помещена в типологию эвгленозои (Euglenozoa).

Фотосинтетические бактерии:

Цианобактерии

Цианобактерии – это кислородные фотосинтетические бактерии. Они собирают солнечную энергию, поглощают углекислый газ и выделяют кислород. Как растения и водоросли, цианобактерии содержат хлорофилл и превращают углекислый газ в глюкозу через фиксацию углерода. В отличие от эукариотических растений и водорослей, цианобактерии являются прокариотическими организмами. Им не хватает окруженного мембраной ядра, хлоропластов и других органелл, обнаруженных в клетках растений и водорослей. Вместо этого цианобактерии имеют двойную наружную клеточную мембрану и сложенные внутренние тилакоидные мембраны, которые используются при фотосинтезе. Цианобактерии также способны к фиксации азота, процесс превращения атмосферного азота в аммиак, нитрит и нитрат. Эти вещества абсорбируются растениями для синтеза биологических соединений.

Цианобактерии встречаются в различных наземных биомах и водных средах. Некоторые из них считаются экстремофилами, потому что обитают в чрезвычайно суровых условиях, например горячие источники и гиперсоленные водоемы. Цианобактерии также существуют как фитопланктон и могут жить в других организмах, таких как грибы (лишайники), простейшие и растения. Они содержат пигменты фикоэритрин и фикоцианин, которые отвечают за их сине-зеленый цвет. Эти бактерии иногда ошибочно называют сине-зелеными водорослями, хотя они вообще к ним не принадлежат.

Аноксигенные бактерии

Аноксигенные фотосинтетические бактерии представляют собой фотоавтотрофы (синтезируют пищу с использованием солнечного света), которые не продуцируют кислород. В отличие от цианобактерий, растений и водорослей, эти бактерии не используют воду в качестве донора электронов в транспортной цепи электрона при производстве АТФ. Вместо этого они используют водород, сероводород или серу в качестве основных доноров электронов. Аноксигенные бактерии также отличаются от цианобактерий тем, что у них нет хлорофилла для поглощения света. Они содержат бактериохлорофилл, который способен поглощать более короткие волны света, чем хлорофилл. Таким образом, бактерии с бактериохлорофиллом, как правило, обнаруживаются в глубоких водных зонах, куда могут проникать более короткие длины волн света.

Примеры аноксигенных фотосинтетических бактерий включают пурпурные и зеленые бактерии. Пурпурные бактериальные клетки бывают разных форм (сферические, стержневые, спиральные), и они могут быть подвижными или не подвижными. Пурпурные серные бактерии обычно встречаются в водных средах и серных источниках, где присутствует сероводород и отсутствует кислород. Пурпурные несерные бактерии используют более низкие концентрации сульфида, чем пурпурные серные бактерии. Зеленые бактериальные клетки обычно имеют сферическую или стержнеобразную форму, и в основном не подвижны. Зеленые серные бактерии используют сульфид или серу для фотосинтеза и не могут жить при наличии кислорода. Они процветают в богатых сульфидами водных средах и иногда образуют зеленоватый или коричневый окрас в своих местах обитания.

Рис.1. Мумия Рамзеса V

Но и Дженнер не имел представления о том, что является причиной заболевания оспой. В XIX веке все болезнетворные организмы и вещества без разбора называли вирусами. Лишь благодаря опытам отечественного биолога Дмитрия Иосифовича Ивановского прекратилась эта путаница! Он пропускал экстракт заражённых табачной мозаикой 1 растений через бактериальные фильтры, сквозь которые не проходят даже самые мелкие бактерии. Выяснилось, что экстракт оставался по-прежнему заразным для других растений. Значит, возбудителями табачной мозаики были организмы, меньшие по размеру, чем бактерии; их назвали фильтрующимися вирусами. Вскоре бактерии перестали называть вирусами, а сами вирусы выделили в отдельное царство живых организмов. Дмитрий Ивановский же во всём мире по праву считается основателем вирусологии — науки о вирусах.

Рис. 2. Дженнер прививает Джеймса Фиппса от оспы

Рис. 2. Дженнер прививает Джеймса Фиппса от оспы

Но что мы пока поняли про вирусы? Только то, что они меньше бактерий. Чем же вирусы так не похожи на другие организмы? И почему понадобилось вдруг их выделять в отдельное царство? А вот почему. В отличие от других живых организмов, вирусы не имеют клеточного строения, а значит, и всех характерных для клетки структур. А ещё они единственные, кто не умеет самостоятельно производить белок, главный строительный материал всего живого. Поэтому их размножение невозможно вне заражённой клетки. Из-за этого многие учёные не без оснований считают вирусы внутриклеточными паразитами.

Жертвами различных вирусов становятся представители всех без исключения существующих царств живых организмов! Так, есть вирусы растений — вирус табачной мозаики (рис. 3, слева), вирус мозаики костра (это растение изображено на рисунке 3, справа), вирус желтухи свёклы, вызывающий иногда даже эпидемии. Кстати, в растение вирус просто так не проникнет. Заражение происходит при травмах растительных тканей. Типичный пример: тля пьёт сок из стебля и для этого протыкает покровные ткани — а вирус тут как тут.

Рис 3. Слева: листья табака, поражённые вирусом табачной мозаики. Справа: костёр (лат. Brómus) — род многолетних травянистых растений семейства Злаки

Рис 3. Слева: листья табака, поражённые вирусом табачной мозаики. Справа: костёр (лат. Brómus) — род многолетних травянистых растений семейства Злаки. Если посмотреть на заросли костра в ветреную погоду, его крупные метёлки, склоняясь под ветром то в одну, то в другую сторону, отсвечивают красноватым светом в солнечных лучах, очень напоминая языки пламени. Отсюда, вероятно, и произошло русское название этого растения

Грибы тоже поражаются вирусами, вызывающими, например, побурение плодовых тел у шампиньонов или изменение окраски у зимнего опёнка. Причиной многих опасных заболеваний животных и человека тоже служат вирусы: вирус гриппа, ВИЧ (вирус иммунодефицита человека), вирус Эбола, вирус бешенства, герпеса, клещевого энцефалита и т. д.

Есть даже вирусы, поражающие бактерии, их называют бактериофагами 2 . Так, в конце XIX века исследователи из Института Пастера заметили, что вода некоторых рек Индии обладает бактерицидным действием, то есть способствует снижению роста бактерий. И достигалось это благодаря присутствию в речной воде бактериофагов.

Рис. 4. Слева: вирус табачной мозаики. В центре: вирус мозаики костра похож на футбольный мяч (справа)

Рис. 4. Слева: вирус табачной мозаики. В центре: вирус мозаики костра похож на футбольный мяч (справа)

Рис. 5. Слева направо: вирус герпеса, аденовирус А человека, бактериофаг

Рис. 5. Слева направо: вирус герпеса, аденовирус А человека, бактериофаг

Рис. 6. Маленькие вирусы-спутники внутри гигантского мимивируса

Рис. 6. Маленькие вирусы-спутники внутри гигантского мимивируса

Но не стоит думать, что вирусы причиняют исключительно вред другим организмам! Так, исследователи из Пенсильванского университета показали, что безвредный для человека вирус AAV2, встречающийся почти у всех людей, убивает самые разные виды раковых клеток. При этом здоровые клетки организма вирус не заражает.

А совсем недавно стало известно, что вирусы тоже болеют. Мимивирус, поражающий амёбу Acanthamoeba polyphaga, сам страдает от другого вируса-спутника (рис. 6). Он, кстати, так и называется — Спутник. Этот вирус-спутник использует механизмы воспроизводства мимивируса для собственного размножения, мешая ему нормально развиваться в клетке амёбы. По аналогии с бактериофагами, он был назван вирофагом, то есть пожирающим вирусы. Можно сказать, что присутствие вируса-спутника в амёбе обеспечивает ей больше шансов на выживание в борьбе с мимивирусом.

Относящийся к данному классу атомно-силовой микроскоп оказался инструментом, подходящим для исследования биологических объектов и позволил не только визуализировать наноразмерные структуры, но и манипулировать ими. В частности, принципиально возможной оказалась манипуляция одиночными вирионами и прямое измерение сил, возникающих при их контакте с поверхностью клетки. Такие эксперименты позволяют получать подробные данные о самом первом и во многих случаях еще недостаточно исследованном этапе заражения клетки — адгезии вируса к ее поверхности. Данные исследования представляют и значительный практический интерес, т.к. могут дать ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

Об авторе

Вирусы являются чрезвычайно малыми объектами — их размеры лежат в диапазоне от нескольких десятков до нескольких сотен нанометров. Первым и на долгое время единственным методом прямой визуализации наноразмерных частиц стала электронная микроскопия (ЭМ), которая начала развиваться в 1930-е гг. Метод, оказавшийся очень информативным, позволил не только детально охарактеризовать структуру различных вирусов, но и исследовать процессы, происходящие в зараженной клетке.

Оказалось, что форма вирусных частиц отличается большим разнообразием: от правильных сфер до сложных структур, напоминающих кирпичи, обклеенные трубочками (вирус натуральной оспы), или щетинистых червей (вирус геморрагической лихорадки Эбола).

Вне клетки любой вирус является всего лишь молекулярным контейнером с генетическим материалом (ДНК или РНК) и вряд ли может считаться полноценным живым организмом, хотя по этому вопросу в научной среде до сих пор нет окончательной терминологической определенности.

Так, исследование репликации вируса методом просвечивающей электронной микроскопии на ультратонких срезах выглядит следующим образом: зараженные клетки обрабатывают фиксирующим раствором, обезвоживают спиртом и заливают специальной смолой. После отвердевания смолы с помощью специального прибора — ультратома — делают ультратонкие (≈ 50 нм) срезы, которые затем наносят на специальную сетку и обрабатывают растворами солей тяжелых металлов. Во время самого микроскопического исследования образец находится в вакуумной камере и подвергается действию пучка электронов с энергией в несколько десятков кэВ. Очевидно, что прижизненная визуализация в данном случае принципиально невозможна.

В течение почти полувека электронная микроскопия оставалась единственным методом визуализации наноразмерных объектов. Однако в начале 1980-х гг. эта монополия была нарушена появлением сканирующей зондовой микроскопии (СЗМ). Основным принципом СЗМ является сканирование — прецизионное (с высокой точностью) перемещение зонда вблизи исследуемой поверхности, сопряженное с отслеживанием определенного параметра, характеризующего взаимодействие между зондом и образцом. Результатом такого сканирования является топографическая карта рельефа поверхности образца.

Первым прибором СЗМ стал сканирующий туннельный микроскоп (СТМ), который мог лишь весьма ограниченно использоваться для визуализации биологических объектов, так как для его работы требовалась высокая электрическая проводимость исследуемой поверхности.

В 1986 г. швейцарский физик Г. Бинниг и его коллеги создали новый прибор семейства СЗМ — атомно-силовой микроскоп (АСМ). В основе его работы лежит силовое (Ван-дер-Ваальсово) взаимодействие атомов зонда и поверхности. АСМ не требуется электрическая проводимость поверхности образца, и он может осуществлять съемку в жидкой среде. Поэтому этот прибор оказался удобным инструментом для исследования биологических объектов.

Принципиальная схема работы атомно-силового микроскопа (АСМ). Чувствительным элементом АСМ является упругая консоль (кантилевер), на конце которой закреплен острый зонд. Силы, возникающие между атомами острия зонда и исследуемой поверхностью приводят к деформации кантилевера, которая в свою очередь фиксируется при помощи оптической системы, реализованной в большинстве современных АСМ на основе полупроводникового лазера и четырехсекционного фотоприемника. Размер кантилевера — 100÷300 × 20÷40 мкм при толщине около 2 мкм. Высота зонда — около 10 мкм

С момента появления атомно-силового микроскопа было опубликовано огромное число работ, посвященных АСМ-визуализации самых разнообразных биологических образцов. Следует все же признать, что в большинстве случаев в плане визуализации АСМ не дает ничего принципиально нового в сравнении с обычной электронной микроскопией, поэтому зачастую данный метод воспринимается биологами как техническая экзотика, а не как полноценный исследовательский инструмент.

Однако важнейшим, пусть и почти единственным преимуществом визуализации биологических объектов при помощи АСМ по сравнению с электронной микроскопией является возможность выполнения исследований нативных, природных образцов без какой-либо фиксации и специальной пробоподготовки, при физиологических параметрах среды.

Помимо визуализации рельефа поверхности с субнанометровым разрешением АСМ позволяет осуществлять прямое измерение сил, возникающих при взаимодействии одиночных наноразмерных объектов.

Проводятся такие измерения следующим образом: один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке, после чего зонд подводится к поверхности подложки до достижения механического контакта, а затем возвращается обратно. В ходе этого перемещения отслеживается деформация упругой консоли (кантилевера). Зависимость этого параметра от расстояния между зондом и подложкой называется силовой кривой. С ее помощью можно определить величину силы, действующей между исследуемыми объектами. Этот метод, названный атомно-силовой спектроскопией (АСС), может использоваться для исследования силовых характеристик взаимодействия самых разнообразных малых объектов: от неорганических наночастиц до вирусов и живых клеток.

Метод атомно-силовой спектроскопии позволяет определить величину силы, действующей между исследуемыми объектами. Для этого один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке. Зонд подводится к поверхности подложки и затем поднимается обратно. Зависимость деформации кантилевера от расстояния между зондом и подложкой называется силовой кривой

Начальным этапом заражения клетки вирусом является адгезия (прилипание) вирусной частицы (вириона) к клеточной поверхности с последующим проникновением генетического материала вируса внутрь клетки. Этот процесс, определяемый взаимодействием белковых рецепторов, расположенных на поверхности клетки, с поверхностными белками вириона, является критически важным для размножения вируса. И, надо отметить, в большинстве случаев изучен недостаточно.

Однако фиксация одиночной вирусной частицы на острие зонда атомно-силового микроскопа является весьма непростой задачей. Для успешного проведения эксперимента требуется большая подготовительная работа:

  • получить как можно более чистый и концентрированный препарат вируса;
  • подготовить на острие зонда площадку подходящего размера для посадки вириона;
  • химически активировать поверхность зонда для образования ковалентных связей при контакте с белками вируса;
  • убедиться в том, что на зонде закрепился действительно вирион, а не молекулы свободного белка или мелкие фрагменты клеток, всегда присутствующие в препаратах вирусов.

Оценка концентрации и степени чистоты препарата вируса обычно проводится методом просвечивающей электронной микроскопии. Площадку на острие АСМ-зонда, которое обычно изготавливают из кремния или его нитрида, формируют путем длительного сканирования кремниевой или сапфировой подложки при больших значениях развертки и силы прижатия зонда к поверхности. Наиболее наглядной иллюстрацией для этого процесса служит изменение формы острия карандаша в ходе интенсивного рисования.

Адекватным методом контроля геометрических параметров зонда атомно-силового микроскопа (а) при создании площадки для посадки вириона, является электронная микроскопия, как сканирующая, так и просвечивающая: б — площадка на острие зонда для посадки крупной вирусной частицы; в — вирусоподобная частица, закрепленная на острие зонда. Просвечивающая электронная микроскопия (JEM 1400, Jeol, Япония)

По меркам микроскопии, клетка высших организмов является относительно крупным (≈ 10 мкм) объектом, поэтому хорошо видна в световом микроскопе, при помощи которого на нее наводится кантилевер атомно-силового микроскопа. Но как быть с самим зондом, на острие которого предполагается наличие вириона? Строго говоря, вместо вириона там может оказаться все, что угодно: монослой белковых молекул, фрагмент клетки или вириона, агрегат из нескольких вирионов, случайное загрязнение и т. д. Кроме того, в процессе измерения вирион может разрушиться или оторваться от зонда. Визуализация же зонда с вирусной частицей методом электронной микроскопии до силовых измерений недопустима, так как под воздействием высушивания, вакуума и пучка электронов вирион приобретет необратимые изменения.

Наиболее эффективным методом решения данной проблемы оказалась визуализация острия зонда АСМ с помощью электронной микроскопии, осуществляемая непосредственно после силовых измерений. Если на острие будет обнаружена вирусная частица, уцелевшая в ходе эксперимента, то все сомнения развеются.

В течение последних пятидесяти лет в результате поистине титанической работы, проделанной электронными микроскопистами всего мира, накоплен огромный багаж знаний в области ультраструктурных аспектов репликации различных вирусов. Создание атомно-силового микроскопа и техники силовой спектроскопии позволило вплотную приблизиться к произвольной механической манипуляции одиночными вирусными частицами. Это выводит изучение взаимодействия вируса с клеткой на принципиально другой уровень — от структурных исследований к функциональным.

При этом атомно-силовая спектроскопия не является конкурентом для электронной микроскопии, а открывает новое самостоятельное направление исследований — наномеханику взаимодействия вирусной частицы с поверхностью клетки. Весьма вероятно, что в самом ближайшем будущем в данном направлении будут совершены фундаментальные открытия, соизмеримые по значимости с достижениями электронной микроскопии в середине прошлого века.

Изучение механизмов связывания вирусных частиц с поверхностью клетки вызывает значительный интерес не только с позиции фундаментальной науки, но и в контексте практических приложений. Более детальное понимание этих механизмов на молекулярном уровне может дать человечеству ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

В публикации использованы фото автора

* Просвечивающая электронная микроскопия с использованием специальной жидкостной ячейки и сканирующая электронная микроскопия при атмосферном давлении позволяют исследовать биологические объекты без фиксации, но из-за ряда технических трудностей и относительно низкого пространственного разрешения эти методы не получили широкого распространения.

Группа исследователей из Массачусетского технологического института смогла сымитировать процесс фотосинтеза, создав М13, простой и безвредный вирус, который помогает разделить воду на два компонента, водород и кислород, при помощи солнечного света.

Вирус, разлагающий воду: Фотосинтез по-новому

Ученые надются, что это лишь первый шаг на пути к использованию солнечного света для создания запасов водорода, которые затем могут быть использованы для выработки электричества или жидкого топлива.

Не занимайтесь самолечением! В наших статьях мы собираем последние научные данные и мнения авторитетных экспертов в области здоровья. Но помните: поставить диагноз и назначить лечение может только врач.

Другие ученые уже создавали системы, использующие электричество для расщепления молекул воды, но как объяснила группа исследователей из МТИ в своей статье, опубликованной в журнале Nature Nanotechnology, разница в том, что работа новой системы основана на биологии, в ней для проведения реакции непосредственно используется солнечный свет, а не электричество.

Подход, который показал наилучшие результаты, имитировал процессы, идущие в растениях, а не просто выхватывал отдельные составляющие этих процессов, адаптируя их под свои нужды, как это делалось раньше. Группа ученых решила создать бактериофага под названием М13, что и позволило достичь высокой эффективности в деле разделения молекул воды на водород и кислород.

Вирус, подобно хлорофиллу, захватывает свет, затем пропускает энергию, подобно проводу. Удлиненная форма вирусов позволяет светопоглощающим пигментам и катализаторам выстроиться в линию с правильными промежутками, чтобы запустить реакцию разложения воды, что очень существенно увеличивает эффективность системы.

По мнению профессора материаловедения и физики материалов Томаса Маллука, не участвовавшего в разработке новой технологии, есть несколько проблем, которые должны быть разрешены прежде, чем появятся искусственные фотосинтетические системы, которые можно будет использовать для конвертации энергии. Чтобы добиться конкурентоспособности с другими технологиями, основанными на использовании энергии солнца, система должна быть как минимум в десять раз эффективнее естественного фотосинтеза, обладать способностью повторять реакцию практически мгновенно, а также изготавливаться из дешевых материалов. Хотя достижение данных целей займет определенное время, аппарат, разработанный в МТИ, определенно является первым шагом на этом пути.

В имеющейся системе атомы водорода разделяются на составляющие, на протоны и электроны, но вторая часть системы (ученые надеются создать ее в течение ближайших двух лет) будет соединять их обратно в атомы водорода и молекулы, так что водород будет вырабатываться и запасаться.

Читайте также: