Приоритет открытия вирусов принадлежит

Обновлено: 19.04.2024

Вирусология – молодая наука, ее история насчитывает немногим более 100 лет. Начав свой путь как наука о вирусах, вызывающих болезни человека, животных и растений, в настоящее время вирусология развивается в направлениях изучения основных законов современной биологии на молекулярном уровне, основываясь на том, что вирусы являются частью биосферы и важным фактором эволюции органического мира.

История вирусологии необычна тем, что один из ее предметов – вирусные болезни – стал изучаться задолго до того, как были открыты собственно вирусы. Начало истории вирусологии – это борьба с инфекционными заболеваниями и только впоследствии – постепенное раскрытие источников этих болезней. Подтверждением тому служат работы Эдуарда Дженнера (1749-1823 гг.) по предупреждению оспы и работы Луи Пастера (1822-1895 гг.) с возбудителем бешенства.

С незапамятных времен оспа была бичом человечества, унося тысячи жизней. Описания оспенной заразы встречаются в рукописях древнейших китайских и индийских текстов. Первые упоминания об эпидемиях оспы на европейском континенте датируются VI столетием нашей эры (эпидемия среди солдат эфиопской армии, осаждавшей Мекку), после чего наблюдался необъяснимый период времени, когда упоминания об эпидемиях оспы отсутствовали. Оспа снова начала гулять по континентам в XVII веке. Например, в Северной Америке (1617-1619 гг.) в штате Массачусетс погибло 9/10 населения, в Исландии (1707 г.) после эпидемии оспы от 57 тыс. человек осталось только 17 тыс., в г. Истхем (1763 г.) от 1331 жителя осталось 4 человека. В связи с этим, проблема борьбы с оспой стояла очень остро.

Методика предупреждения оспы через прививку, называемая вариоляцией, была известна с давних времен. Упоминания о применении вариоляции в Европе датируются серединой 17-го века со ссылками на более ранний опыт применения в Китае, на Дальнем Востоке, в Турции. Суть вариоляции заключалась в том, что содержимое пустул от пациентов, болевших легкой формой оспы, вносили в маленькую ранку на коже человека, что вызывало легкое заболевание и предупреждало острую форму. Однако при этом сохранялась большая опасность заболевания тяжелой формой оспы и смертность среди привитых достигала 10 %. Дженнер совершил переворот в методике предупреждения оспы. Он первый обратил внимание на то, что люди, переболевшие коровьей оспой, которая протекала легко, впоследствии никогда не болели оспой. 14 мая 1796 г. Дженнер внес в ранку Джеймса Фипса, никогда не болевшего оспой, жидкость из пустул больной коровьей оспой доярки Сары Селмес. На месте искусственной инфекции у мальчика появились типичные пустулы, которые через 14 дней исчезли. Тогда Дженнер внес в ранку мальчика высокоинфекционный материал из пустул больного оспой. Мальчик не заболел. Так зародилась и подтвердилась идея вакцинации (от латинского слова vacca – корова). Во времена Дженнера вакцинация понималась как внесение инфекционного материала коровьей оспы в организм человека с целью предотвращения заболевания натуральной оспой. Термин вакцина применяли к веществу, предохранявшему от оспы. С 1840 г. противооспенную вакцину стали получать заражением телят. Вирус оспы человека был открыт только в 1904 г. Таким образом, оспа – это первая инфекция, против которой была применена вакцина, т. е. первая управляемая инфекция. Успехи в вакцинопрофилактике черной оспы привели к ее искоренению в мировом масштабе.

В наше время вакцинация и вакцина употребляются как общие термины, обозначающие прививку и прививочный материал.

Следует отметить, что ни вирус оспы, ни вирус бешенства не были первыми открытыми вирусами, поражающими животных и человека. Первое место по праву принадлежит вирусу ящура, открытому Леффлером и Фрошем в 1898 г. Эти исследователи, используя многократные разведения фильтрующегося агента, показали его ядовитость и сделали заключение о его корпускулярной природе.

А – Электронная микрофотография после косого напыления углеродом и платиной; 65 000 ×. (Фото Н. Frank.) Б – Модель. (Karlson, Kurzes Lehrbuch der Biochemie, Stuttgart, Thieme, 1980).

Рисунок 1 – Вирус табачной мозаики

В настоящее время ясно, что вирусы характеризуются убиквитарностью, то есть повсеместностью распространения. Вирусы поражают представителей всех царств живого: человека, позвоночных и беспозвоночных животных, растения, грибы, бактерии.

Изучение вирусов насекомых существенно отстало от вирусологии позвоночных животных и человека. В настоящее время ясно, что вирусы, поражающие насекомых, условно можно разделить на 3 группы: собственно вирусы насекомых, вирусы животных и человека, для которых насекомые являются промежуточными хозяевами, и вирусы растений, которые также поражают насекомых.

Первый вирус насекомых, который был идентифицирован – вирус желтухи шелковичного червя (вирус полиэдроза тутового шелкопряда, названный Bollea stilpotiae). Еще в 1907 г. Провачек показал, что фильтрованный гомогенат больных личинок является инфекционным для здоровых личинок тутового шелкопряда, но только в 1947 г. немецкий ученый Бергольд обнаружил палочковидные вирусные частицы.

Одним из наиболее плодотворных исследований в области вирусологии является изучение Ридом природы желтой лихорадки на волонтерах армии США в 1900-1901 гг. Убедительно было продемонстрировано, что желтая лихорадка вызывается фильтрующимся вирусом, который передавался комарами и москитами. Было также установлено, что москиты после впитывания инфекционной крови в течение двух недель остаются неинфекционными. Таким образом, был определен внешний инкубационный период заболевания (время, необходимое для репродукции вируса в насекомом) и установлены основные принципы эпидемиологии арбовирусных инфекций (вирусных инфекций, передаваемых кровососущими членистоногими).

Способность размножения вирусов растений в своем переносчике – насекомом была показана в 1952 г. Мараморошу. Исследователь, используя технику инъекций насекомым, убедительно показал способность вируса желтухи астр размножаться в своем переносчике – шеститочечной цикаде.

Очень скоро после работ Д. И. Ивановского было установлено, что вирусы широко распространены в природе и вызывают заболевания не только у растений, но и у животных и человека. Открытия вирусов следовали одно за другим: 1897 г. – вирус ящура; 1901 г. – вирус желтой лихорадки; 1903 г. – вирус бешенства; 1908 г. – вирус оспы человека; 1909 г. – вирус полиомиелита. Эти открытия не прекращаются и в наше время: 1970 г. – вирус гепатита В; 1973 г. – вирус гепатита А; 1977 г. – вирус дельта-гепатита; 1983 г. – вирус иммунодефицита человека.

Похожие книги из библиотеки

222 рецепта для молодости и красоты

222 рецепта для молодости и красоты

В ожидании малыша

В ожидании малыша

Девять месяцев беременности – самое счастливое и ответственное время для каждой женщины. Пройти этот непростой период, от которого зависит ваше здоровье и здоровье будущего малыша, помогут вам известные педиатры и акушеры Уильям и Марта Сирс. Вы узнаете обо всех изменениях, которые произойдут с вашим телом, самочувствием и сознанием, а также о таинственной жизни, происходящей внутри вас. Кроме того, вы научитесь сохранять самообладание в экстренных ситуациях: во время болезни, при непредвиденных осложнениях и даже во время преждевременных родов. Авторы ответят на самые распространенные вопросы и разрешат все ваши сомнения, а также помогут обрести эмоциональное спокойствие и вооружат вас знаниями, чтобы произвести на свет веселого и крепкого малыша.

Общественное здоровье и здравоохранение

Общественное здоровье и здравоохранение

Я знаю о весе все… и даже больше

Я знаю о весе все… и даже больше

Очень редко, когда женщина бывает полностью довольна своей внешностью. Всегда есть желание что-то изменить в жизни, в себе и, конечно же, похудеть. Ирина Головина, врач-психотерапевт с 20-летним стажем, за это время узнала о весе все, что возможно, и хочет научить тебя. Принимай себя, услышь сигналы своего тела, люби и заботься о душе и теле, ведь только в гармонии можно начать избавляться от лишнего веса и избежать срывов, при которых килограммы, с которыми распрощались мы с таким трудом, возвращаются порой в троекратном размере. Худей спокойно и без правил.

НЛП. Полный курс освоения базовых приемов

НЛП. Полный курс освоения базовых приемов

Данное пособие достигает того, что не удавалось до сих пор ни одной книге: оно систематически, последовательно и исчерпывающе объясняет, что такое НЛП и как грамотно использовать приемы этого знаменитого направления в практической психологии и психотерапии. Отлично структурированное и профессионально организованное, отличающееся широким набором упражнений и методов, способствующих надежному усвоению материала, издание предоставляет читателю превосходную возможность получить все лучшее из НЛП как для удовлетворения первого любопытства, так и для повышения своей профессиональной квалификации до уровня Практик НЛП. Майкл Холл и Боб Боденхамер – сертифицированные мастера и тренеры НЛП, одни из самых известных международных авторов и практикующих консультантов и психотерапевтов современности.

Гогулан. Все ключевые упражнения и рекомендации системы

Гогулан. Все ключевые упражнения и рекомендации системы

Медицинская микробиология, иммунология и вирусология

Нажмите, чтобы узнать подробности

Приоритет открытия вирусов принадлежит выдающемуся русскому ученому Д. И. Ивановскому.12 февраля 1892 г. является официальным днем рождения новой науки — вирусологии, а Д. И. Ивановский — ее основоположником. К основным свойствам вируса относятся: ультрамикроскопические размеры; содержит только одну нуклеиновую кислоту (ДНК или РНК); вирусы-абсолютно внутриклеточные паразиты, паразитируют в клетках растений, животных и человека. Даётся классификация вирусов, какие заболевания вызываются вирусами, механмизм внедрения вируса в клетку и меры профилактики.

(для учащихся 10 класса химико-биологического профиля)

освоение знаний о роли биологической науки в формировании современной естественнонаучной картине мира (появление неклеточных форм жизни)

продолжить развитие познавательных интересов, интеллектуальных и творческих способностей в процессе изучения выдающихся достижений биологии

воспитание необходимости бережного отношения к собственному здоровью

использование приобретенных знаний и умений в повседневной жизни для обоснования и соблюдения мер профилактики заболеваний.

Задача: Рассмотреть особенности строения, жизнедеятельности вирусов и их значение в природе для человека.

Оборудование: таблицы по общей биологии, мультимедиа.

План лекции:

1. История вирусологии

2. Основные свойства вирусов

3. Формы существования вирусов

4. Структура и химический состав простых вирионов

5. Структура и химический состав сложных вирионов

6. Нуклеиновые кислоты вирусов

1. С.Лурия, Дж. Дарнелл. Общая вирусология. М., 1970

2. А.Г.Букринская. Вирусология. М., 1986

3. А.И.Коротяев, С.А.Бабичев. Мед. микробиол., иммунол.

и вирусология. СПб., 1998. 2000, 2001

Интернет ресурсы

История вирусологии

Приоритет открытия вирусов принадлежит выдающемуся русскому ученому Д. И. Ивановскому. (слайд 2, Л1)

Еще, будучи студентом Петербургского университета, в 1887 г. по предложению своих учителей А. Н. Бекетова и А. С. Фаминцына Д. И. Ивановский вместе со студентом В. В. Половцевым приступил к изучению мозаичной болезни табака, наносившей большой вред сельскому хозяйству. (слайд 3, Л1)

12 февраля 1892 г. является официальным днем рождения новой науки — вирусологии, а Д. И. Ивановский — ее основоположником. (слайд 4, Л1)

Очень скоро после работ Д. И. Ивановского было установлено, что вирусы широко распространены в природе и вызывают заболевания не только у растений, но и у животных и человека. Открытия вирусов следовали одно за другим: 1897 г. - вирус ящура; 1901 г. - вирус желтой лихорадки; 1903 г. — вирус бешенства; 1908 г. — вирус оспы человека; 1909 г. — вирус полиомиелита. Эти открытия не прекращаются и в наше время: 1970 г. - вирус гепатита В; 1973 г. - вирус гепатита А; 1977 г. - вирус дельта-гепатита; 1983 г. - вирус СПИДа.

Основные свойства вирусов

Основные свойства вирусов, по которым они отличаются от всех остальных живых существ следующие: (слайд 11, Л1)

содержат нуклеиновую кислоту только одного типа — или ДНК, или РНК (все другие организмы содержат нуклеиновые кислоты обоих типов, а геном у них представлен только ДНК);

вирусы не способны к росту и бинарному делению;

вирусы размножаются путем воспроизводства себя из собственной геномной нуклеиновой кислоты;

у вирусов отсутствуют собственные системы мобилизации энергии;

у вирусов нет собственных белоксинтезирующих систем.

вирусы – абсолютные внутриклеточные паразиты, их средой обитания являются бактерии, клетки растений, животных и человека.

С учетом перечисленных особенностей вирусам можно дать следующее определение: Вирусы – это особое царство ультрамикроскопических размеров организмов, обладающих только одним типом нуклеиновых кислот, лишенных собственных систем синтеза белка и мобилизации энергии и являющихся, поэтому абсолютными внутриклеточными паразитами (А. И. Коротяев).

Молекулярно-генетическая организация вирусов

(слайд 2, Л2) Основой таксономии вирусов является вирион, который представляет собой конечную фазу развития вируса. Вирион состоит из геномной нуклеиновой кислоты, окруженной одной или двумя оболочками. (слайд 9, Л1) По строению вирусы можно разделить на 4 типа, которые различаются по характеру упаковки морфологических субъединиц:

а) вирусы со спиральной симметрией; б) изометрические вирусы с кубической симметрией; в) вирусы с бинарной симметрией, например фаги: у них головка имеет кубический тип симметрии, а хвостик - спиральный; г) более сложно организованные вирусы, имеющие вторую оболочку.

Оболочка, в которую упакована геномная нуклеиновая кислота, называется капсидом (от греч. capsa - ящик). Наиболее просто организованные вирусы представляют собой нуклеокапсиды: они состоят только из нуклеиновой кислоты и белковой оболочки, построенной из идентичных пептидных молекул. Поскольку число аминокислотных остатков в белковой молекуле всегда меньше числа нуклеотидов в гене (код триплетный), то для того, чтобы упаковать геномную нуклеиновую кислот требуется большое число одинаковых белковых молекул. А многократное повторение белок-белковых взаимодействий возможно лишь при условии симметричного расположения субъединиц. Существует всего два способа упаковки одинаковых белковых молекул в капсид, при которых он обладал бы стабильностью. Процесс образования такого полимера родствен процессу кристаллизации, он протекает по типу самосборки. Один из вариантов такой самосборки происходит с использованием спиральной симметрии, другой - кубической симметрии.

При спиральной симметрии (ее имеют нитевидные вирусы) белковые субъединицы располагают по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота. Лучше все этот тип молекулярной организации вириона изучен у вируса мозаичной болезни табака, капсид вириона которого состоит из 2130 белковых молекул, винтообразно уложенных вокруг РНК, содержащей около 6000 нуклеотидов. С каждой белковой субъединицей связано три нуклеотида. Белковая спираль состоит из 130 витков. При спиральной симметрии белковый чехол лучше защищает геномную нуклеиновую кислоту, но при этом требуется большее количество белка, чем при кубической симметрии.

Большинство вирусов с замкнутым чехлом обладает кубической симметрией. В ее основе лежат различные комбинации равносторонних треугольников, образующихся из сочетания шаровидных белковых субъединиц. Сочетаясь определенным образом друг с другом, они могут формировать замкнутую сферическую поверхность. Из различных сочетаний равносторонних треугольников, которые образуют общую вершину и общую ось симметрии, могут возникать различные варианты многогранников: тетраэдры, октаэдры и икосаэдры. Икосаэдры имеют 20 граней (каждая представляет равносторонний треугольник), 12 вершин и пятикратную тройную и двойную оси вращательной симметрии. Это самая эффективная и экономичная симметрия для формирования замкнутого чехла, так как в этом случае при его сборке используются строительные белки минимального размера и обеспечивается наибольший внутренний объем вириона. Видимо, поэтому сферические вирусы животных чаще всего имеют форму икосаэдра.

Число капсомеров для вирусов данного вида является постоянным, оно имеет диагностическое значение. Например, вирион аденовирусов имеет 252 капсомера, у парвовирусов - 32, у паповавирусов - 72. Молекулярная организация всех простых вирусов сводится к использованию спиральной и кубической симметрии.

Наиболее сложное строение имеют самые крупные вирусы, относящиеся к семейству поксвирусов. Их вирионы имеют форму параллелепипеда (или овоидную), размером 300-450 х 170-260 нм. Вирионы покрыты внешней оболочкой, под которой располагаются сложное образование из тубулярных структур и внутреннее ядро, состоящее из ДНК-содержащей сердцевины и одного или двух боковых телец. Вирион содержит более 30 структурных белков и несколько ферментов. Таким образом, структура вириона у каждого семейства вирусов имеет отличительные особенности. Форма и относительные размеры ДНК - и РНК - содержащих вирусов представлены на рисунках.

Вироиды и прионы

В природе помимо вирусов обнаружены другие очень мелкие загадочные инфекционные агенты с необычными свойствами. К ним относятся вироиды и прионы.

Вироиды, в отличие от вирусов, не имеют белковой оболочки и состоят только из инфекционной молекулы РНК.

Они не обладают антигенными свойствами и поэтому не могут быть обнаружены серологическими методами.

Вироиды имеют очень малые размеры: длина молекулы РНК вироидов равна 1 • 10 6 мм, она состоит из 300-400 нуклеотидов.

Вироиды - самые маленькие способные к размножению единицы, известные в природе.

Молекулы вироидов представляют собой одноцепочечные кольцевые РНК.

Молекулы РНК вироидов не кодируют собственных белков, поэтому их размножение может происходить либо аутокаталитически, либо оно зависит от клетки-хозяина.

С 1971 г. обнаружено более 10 различных вироидов, отличающихся по первичной структуре, кругу поражаемых хозяев, по симптомам вызываемых ими заболеваний. Все известные вироиды построены по одному плану: 300-400 нуклеотидов образуют кольцо, которое удерживается парами оснований и образует двухцепочечную палочковидную структуру с перемежающимися короткими одно- и двухцепочечными участками.

Вопрос о природе, происхождении вироидов и о том, каким способом они распространяются, остается открытым. Существует предположение, что вироиды образуются из нормальных клеточных РНК, однако убедительных подтверждений этому не было представлено.

и четыре болезни животных: скрепи овец, губкообразную энцефалопатию коров, трансмиссивную энцефалопатию норок и хроническую изнуряющую болезнь находящихся в неволе чернохвостого оленя и лосей.

Миотрофический лейкоспонгиоз - медленная инфекция человека, характеризующаяся прогрессирующим развитием атрофических парезов мышц конечностей и туловища, нарушением дыхания и смертельным исходом.

Предполагается, что прионы играют роль в этиологии шизофрении, миопатии и некоторых других заболеваний человека. Природа прионов остается неясной. Они представляют собой группу особых, не содержащих нуклеиновых кислот, низкомолекулярных белков с м. м. 27-30 кД. С вирусами их объединяют малые размеры (они способны проходить через бактериальные фильтры) и неспособность размножаться на искусственных питательных средах; специфический круг поражаемых хозяев; длительная персистенция в культуре клеток, полученной из тканей зараженного хозяина, а также в организме больного человека и животного. Вместе с тем, они существенным образом отличаются от вирусов: во-первых, у них отсутствует собственный геном, следовательно, они не могут рассматриваться, в отличие от вирусов, как живые существа; во-вторых, они не индуцируют никакого иммунного ответа; следовательно, возникает вопрос о степени их чужеродности для организма хозяина. В-третьих, прионы обладают более высокой резистентностью, чем обычные вирусы, к действию высокой температуры, УФ-облучению, ионизирующей радиации и к различным дезинфектантам; нечувствительны к интерферонам и не индуцируют их синтеза. Предполагается, что патогенное действие прионов связано с тем, что они блокируют функции определенных генов, следствием чего является нарушение нормальных физиологических реакций и синтез каких-то аномальных белков. Электронномикроскопически прионы не идентифициро-ваны. Поскольку белки сами по себе не способны размножаться, вопрос о механизме генетического контроля репродукции прионов, как и вопрос об их истинной этиологической роли и факторах патогенности, остается открытым.

Методы культивирования вирусов

Возможности изучения вирусов возрастали по мере совершенствования методов их исследования. Как известно, Л. Пастер еще в 1884 г. для обнаружения вируса бешенства использовал метод заражения животных. Использование метода фильтрования через фарфоровые свечи позволило Д. И. Ивановскому открыть царство вирусов. С изобретением электронной микроскопии появилась возможность увидеть вирусы и изучать их морфологию. Совершенствование методов сверхскоростного центрифугирования в градиенте плотности позволило получить препараты вирусов в очищенном виде и установить их химический состав. Исключительно важное значение для развития вирусологии имела разработка методов культивирования вирусов. Раньше всего для этой цели было использовано заражение различных животных, но этот метод еще не позволял получать чистые культуры вирусов, с его помощью их можно было только обнаружить и установить причинную связь с той или иной болезнью.

Поскольку вирусы не растут на искусственных питательных средах, а размножаются только внутриклеточно, нужно было найти простые и общедоступные методы их культивирования. Крупным достижением было предложение в 1932 г. Р. Гудпасчура использовать для культивирования вирусов куриные эмбрионы, в клетках которых успешно размножаются многие вирусы. Однако окончательное решение проблемы их культивирования оказалось возможным лишь после того, как были разработаны основные способы культивирования клеток вне организма.

Хотя способность клеток расти вне организма была установлена еще в 1907 г., потребовалось много лет для разработки доступных методов культивирования клеток, а в них — вирусов. Вначале был использован метод переживающих тканей. Он заключался в том, что в колбу, содержащую питательную среду, вносили кусочек ткани. Клетки некоторых тканей в таких условиях могут переживать (но не размножаться) до 30 дней, а в них могут размножаться вирусы. Однако этот способ давал очень небольшой выход вирусов. Необходимо было разработать условия, при которых клетки ткани могли бы свободно размножаться. К началу второй половины XX века эпидемии полиомиелита приняли настолько широкий и опасный характер, что требовалось принять немедленные меры для создания вакцины, которую можно было бы использовать для массового применения. Но для этого нужно было найти метод, позволяющий быстро выращивать вирусы в большом количестве. Это и явилось одним из обстоятельств, стимулировавших разработку методов культивирования вирусов. Для получения культур клеток, которые можно было бы использовать для выращивания вирусов, необходимо было решить четыре главных проблемы:

получить в необходимом количестве свободные (т. е. изолированные друг от друга) клетки;

создать такие питательные среды и условия, в которых клетки могли бы активно размножаться;

обеспечить условия, при которых в культурах клеток не могли бы размножаться бактерии;

определить методы, с помощью которых можно было бы распознавать рост вируса в культуре клеток и идентифицировать его.

Все эти проблемы были решены. Для выделения изолированных, но жизнеспособных клеток из разрушенных тканей использовали обработку их слабым раствором трипсина, разрушающего межклеточные мостики. Решающее значение имели опыты, проведенные в 1949 г. Дж. Эндерсом, Т. Веллером и Ф. Роббинсом, которые показали, что вирус полиомиелита хорошо размножается в первично-трипсинизированных культурах клеток, полученных из почек обезьян.

Разработка способов получения культур клеток позволила широко внедрить в практическую медицину современные классические методы вирусологической диагностики инфекционных заболеваний, с одной стороны, и обеспечить накопление вирусов в количествах, достаточных для производства вакцин, с другой. Основной недостаток первично-трипсинизированных клеток заключается в том, что после нескольких пересевов они перестают размножаться. Поэтому предпочтением стали пользоваться культуры таких клеток, которые способны размножаться in vitro бесконечно долго. Такие перевиваемые культуры клеток получают из опухолевых тканей (HeLa, НЕр-2 и др.) или из мутантных клеток с полиплоидным набором хромосом. Однако опухолевые клетки нельзя применять для получения вакцин. Для этих целей используют только культуры таких клеток, которые не содержат никаких контаминантных вирусов и не обладают злокачественностью. Лучше всего этим требованиям отвечают культуры диплоидных клеток. «Штаммом диплоидных клеток называется морфологически однородная культура клеток, стабилизированная в процессе культивирования in vitro, имеющая ограниченный срок жизни, характеризующаяся тремя фазами роста (стабилизации, активного роста и старения), сохраняющая в процессе пассирования кариотип, свойственный исходной ткани, свободная от контаминантов и не обладающая онкогенной активностью при трансплантации хомячкам (решение симпозиума по диплоидным клеткам, Москва, 1971).

Как оказалось, вирусы могут размножаться не только в культурах клеток, образующих монослой на стекле пробирок, но и в суспензиях живых клеток. Таким образом, для выделения чистых культур вирусов в настоящее время используют чаще заражение куриных эмбрионов, первично-трипсинизированных и перевиваемых культур клеток.

Широкое распространение получил предложенный в 1952 г. Р. Дюльбекко метод бляшек (негативных колоний), позволяющий производить количественное определение вирусов.

Методы идентификации (типирования) вирусов

Определение типа вируса (его идентификация) основано на нейтрализации биологической активности вируса с помощью типоспецифических сывороток. Конечный результат ее может быть установлен на основании следующих признаков:

нейтрализация цитопатического действия;

нейтрализация реакции гемадсорбции;

изменение проявления цветной пробы;

задержка (торможение) реакции гемагглютинации;

нейтрализация в опытах на животных.

Кроме того, для идентификации вирусов применяют методы иммунофлуоресценции, а также ДНК- ДНК (РНК-РНК)-гибридизации.

Классификация вирусов

Для классификации вирусов в настоящее время используют следующие критерии:

Нуклеиновая кислота: тип, число нитей, процентное содержание, молекулярная масса, содержание гуанина и цитозина.

Морфология: тип симметрии или псевдосимметрии, число капсомеров для вирусов с кубической симметрией, наличие внешней липопротеиновой оболочки, форма, размеры вирионов.

Биофизические свойства: константа седиментации, плавучая плотность.

Белки: количество структурных белков, их локализация, аминокислотный состав.

Размножение в тканевых культурах, особенности репликации.

Круг поражаемых хозяев, особенности патогенеза инфекционного процесса; онкогенные свойства.

Устойчивость к физическим и химическим факторам (гамма-лучи, термоинактивация при 37°С и 50°С, действие жирорастворителей и отдельных катионов).

История вирусологии довольно необычна. Первая вак­цина для предупреждения вирусной инфекции — оспы была предложена английским врачом Э. Дженнером в 1796 г., почти за сто лет до открытия вирусов, вторая вакцина — антирабическая, была предложена основателем микробиологии Л. Пастером в 1885 г. — за семь лет до открытия вирусов.

Честь открытия вирусов принадлежит нашему сооте­чественнику Д.И. Ивановскому, который впервые в 1892 г. доказал существование нового типа возбудителя болезней на примере мозаичной болезни табака.


Рис. 1. Дмитрий Иосифович Ивановский – основатель вирусологии.

Ивановский установил, что болезнь табака, распространенная в Крыму, вызывается вирусом, который обладает высокой заразительностью и строго выраженной специфичностью действия. Это открытие показало, что наряду с клеточными формами существуют живые системы, невидимые в обычные световые микроскопы, проходящие через мелкопористые фильтры и лишенные клеточной структуры.

Спустя 6 лет в 1898 г. после открытия Д.И. Ивановского гол­ландский ученый М. Бейеринк подтвердил данные, полученные русским ученым, придя, однако, к вы­воду, что возбудитель табачной мозаики — жидкий живой контагий. Ивановский с этим выводом не согла­сился. Благо­даря его замечательным исследованиям ого Ф. Леффлер и П. Фрош в 1897 г. установили вирусную этиоло­гию ящура, показали, что возбудитель ящура также проходит через бактериальные фильтры. Ивановский, анализируя эти данные, пришел к выводу, что агенты ящура и табачной мозаики принци­пиально сходны. В споре с М. В. Бейеринком прав ока­зался Ивановский.

В дальнейшем были открыты и изучены возбуди­тели многих вирусных заболеваний человека, животных и растений.

Ивановский от­крыл вирус растений. Леффлер и Фрош открыли вирус, поражаю­щий животных. Наконец, в 1917 г. Д'Эррель открыл бактериофаг — вирус, по­ражающий бактерии. Та­ким образом, вирусы вызывают болезни растений, живот­ных, бактерий.

В 1892 г. современник Пастера и ближайший сотрудник И.И. Мечникова Н.Ф. Гамалея (1859-1949 гг.) обнаружил явле­ние спонтанного растворения микробов, которое, как было установлено Д'Эреллем, обусловлено действием вируса бак­терий — фага.

Под руководством И.И. Мечникова Н.Ф. Гамалея участво­вал в создании первой бактериологической станции в России и второй в мире пастеровской станции. Его исследования посвя­щены изучению инфекции и иммунитета, изменчивости бакте­рий, профилактике сыпного тифа, оспы, чумы и других болезней.

В 1935 году У.Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристаллическом виде вирус табачной мозаики (ВТМ). За это в 1946 году ему была вручена Нобелевская премия.

В 1958 году Р.Франклин и К.Холм, исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием.




В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида. В этом же году крупный советский ученый Л.А.Зильбер сформулировал основные положения вирусогенетической теории.

В 1962 году американские ученые А.Зигель, М.Цейтлин и О.И.Зегал экспериментально получили вариант ВТМ, не обладающий белковой оболочкой, выяснили, что у дефектных ВТМ частиц белки располагаются беспорядочно, и нуклеиновая кислота ведет себя, как полноценный вирус.

В 1968 году Р.Шепард обнаружил ДНК-содержащий вирус.

Одним из крупнейших открытий в вирусологии является открытие большинства структур различных вирусов, их генов и кодирующих ферментов - обратная транскриптаза. Назначение этого фермента - катализировать синтез молекул ДНК на матрице молекулы РНК.

Читайте также: