Самый маленький геном вируса

Обновлено: 27.03.2024

Георгий Александрович Базыкин — кандидат биологических наук, заведующий сектором молекулярной эволюции в Институте проблем передачи информации им. А. А. Харкевича РАН, ведущий научный сотрудник лаборатории эволюционной геномики факультета биоинженерии и биоинформатики МГУ им. М. В. Ломоносова. Занимается изучением различных вопросов биологической эволюции с использованием методов геномики и биоинформатики.

Юрий Эдуардович Стефанов — кандидат биологических наук, научный сотрудник Института молекулярной биологии РАН им. В. А. Энгельгарта и научный консультант студии научного дизайна Visual Science. Область научных интересов — эволюция мобильных генетических элементов, трехмерное компьютерное моделирование вирусных частиц.

В общественном сознании закрепилось довольно легкомысленное отношение к гриппу. Действительно, зачастую его симптомы не тяжелее простудных, да и беспокоит он нас не дольше недели, причем проходит обычно без всякого лечения. Однако история взаимодействий человека и вируса гриппа требует более серьезного подхода к этому патогену. Достаточно вспомнить, что одни из самых страшных пандемий прошлого века были вызваны этим вирусом * . Да и обычный сезонный грипп далеко не безвреден: по оценкам Всемирной организации здравоохранения, ежегодно от него и связанных с ним осложнений умирают сотни тысяч человек (в первую очередь, пожилые люди, младенцы и страдающие хроническими заболеваниями), а в годы тяжелых пандемий — миллионы. По числу унесенных жизней среди инфекционных заболеваний грипп уступает, пожалуй, только ВИЧ. Основная проблема профилактики и лечения гриппа связана с тем, что вирус очень быстро меняется, и каждый год мы имеем дело с его новыми формами, поведение которых далеко не всегда можно предсказать. Очередным шагом на пути к пониманию изменчивости вируса гриппа стал компьютерный анализ последовательностей аминокислот в белках вируса и нуклеотидов в его геноме.

Первая в мире полная достоверная модель вируса гриппа A/H1N1 с атомным разрешением, созданная в рамках проекта Viral Park компании Visual Science при участии Национального центра биотехнологии в Мадриде. Цель проекта — построение научно достоверных 3D-моделей распространенных вирусов человека с максимальной детализацией. Специалисты Visual Science собирают воедино данные огромного количества работ по молекулярной биологии, вирусологии и кристаллографии вирусов, мнения экспертов ведущих научных центров мира и результаты молекулярного моделирования, полученные научным отделом компании. Модель в значительной степени построена на основе данных, опубликованных исследовательскими коллективами под руководством: Хуана Ортина (Испанский национальный центр биотехнологий, Мадрид, Испания), Такеши Нода (Университет Токио, Япония), Роба Ригро (Отдел взаимодействий вируса и клетки, Гренобль, Франция) и Питера Розенталя (Национальный институт медицинских исследований, Лондон, Великобритания). Точное строение генома вируса гриппа удалось смоделировать благодаря сотрудничеству с Хайме Мартин-Бенито (Испанский национальный центр биотехнологий, Мадрид, Испания), группа которого добилась уникальных результатов в описании упаковки вирусного генетического материала. Создатели модели: Иван Константинов (руководитель проекта), Юрий Стефанов (научный консультант), Анастасия Бакулина (ведущий молекулярный моделлер), Дмитрий Щербинин (молекулярный моделлер), Александр Ковалевский (3D-моделлер)

Сегментированный геном

Общая длина генома вируса гриппа составляет приблизительно 13 500 нуклеотидов [2]. Три самых крупных (примерно по 2300 нуклеотидов) его сегмента (PA, PB1 и PB2) кодируют вирусную полимеразу — белок, копирующий РНК и состоящий из трех крупных субъединиц. Четвертый по длине (около 1750 нуклеотидов) сегмент (HA) отвечает за синтез гемагглютинина. Этот белок заякорен в липидной оболочке вируса и отвечает за его проникновение в клетку, связываясь с рецептором на поверхности клеточной мембраны [3]. В зависимости от того, какой именно вариант гемагглютинина несет вирус, связывание может быть более или менее крепким. После этого клетка поглощает вирус, помещая его в мембранный пузырек внутри цитоплазмы. Большинство макромолекулярных комплексов, поглощаемых таким образом, перевариваются клеткой. Однако вирус избегает этой участи: его мембрана сливается с мембраной пузырька, в результате чего ее содержимое оказывается в цитоплазме. В этом процессе гемагглютинин также играет важную роль. Затем геном вируса проникает в ядро, где с него может начать считываться информация.

Сегмент размером около 1550 нуклеотидов (NP) кодирует нуклеопротеин — белок, необходимый вирусу для упаковки РНК. Множество копий такого белка распределяется по каждому из геномных сегментов, связываясь с молекулой нуклеиновой кислоты. В результате фрагменты генома образуют нуклеопротеидные тяжи, сложенные пополам и закрученные в спираль, к каждому из которых прикрепляется своя копия полимеразного комплекса [4].

Сегмент M1/M2 длиной 1000 нуклеотидов, в соответствии со своим названием, кодирует сразу два белка — М1 и М2. Из молекул первого из них образован слой (матрикс), подстилающий вирусную липидную оболочку. Обычно М1 играет ключевую роль в формировании вирусных частиц, поскольку он взаимодействует одновременно с поверхностными белками вируса и внутренними компонентами вирусной частицы. Задача матриксного белка — собрать все составляющие воедино [6]. Белок М2 выполняет роль ионного канала. Он расположен в липидной оболочке вируса и способствует его распаковке в цитоплазме клетки [7].

Последний, самый короткий (из 865 нуклеотидов) сегмент РНК вируса гриппа отвечает за синтез двух белков, которые не попадают в зрелую вирусную частицу. Эти белки называются NS1 и NEP. Первый необходим вирусу, в частности, для того, чтобы блокировать считывание информации с клеточных молекул РНК [8]. Благодаря ему клетке приходится синтезировать преимущественно вирусные белки, оставляя свои собственные нужды. Второй белок, NEP, обеспечивает транспорт новообразованных геномных комплексов вируса из ядра к клеточной мембране, где происходит сборка вирионов [9].

Новые штаммы и поиск реассортаций

Классификация штаммов вируса гриппа основана прежде всего на том, какие именно варианты гемагглютинина и нейраминидазы входят в его состав. Широко известные комбинации букв H и N в сочетании с порядковыми номерами (например, H3N2) как раз и обозначают подтип вируса: гемагглютинин 3, нейраминидаза 2. Таких подтипов десятки, однако человека заражают лишь немногие — обычно те, у которых не слишком большие номера N и H. Наиболее давние хозяева вируса гриппа — птицы, от которых новые штаммы время от времени передаются домашнему скоту и, прямо или опосредованно, людям [10]. Чем более долгий период коэволюции провели вместе патоген и хозяин, тем менее болезненным становится их совместное существование. Птичьи штаммы вируса зачастую оказываются очень опасными после передачи новым хозяевам [11].

Известно, что именно реассортации сегментов РНК привели к возникновению штаммов, которые вызвали пандемии азиатского и гонконгского гриппа в 1957 и 1968 гг., унесшие около 2,5 млн жизней [12]. Возможно, что и испанский грипп начала прошлого века, число жертв которого шло на десятки миллионов, тоже появился в результате такой эволюционной схемы [13].

Подобное исследование можно провести с использованием геномов вируса гриппа, опубликованных в свободном доступе. Избрав в качестве объекта штаммы H3N2, можно составить выборку из 1376 сегментированных геномов, а затем сравнить между собой филогенетические деревья для этих вирусов, построенные в отдельности по каждому из геномных сегментов [15].

В результате такого сравнения оказалось, что число реассортаций примерно сопоставимо для разных сегментов: в ходе эволюции гриппа в популяции человека каждая пара сегментов в недавнем прошлом реассортировала около 50 раз.

Последствия реассортаций

После того как ветви, в которых произошли реассортации, были обнаружены, стало возможным оценить их влияние на накопление в сегментах вирусного генома точечных замен. Для этого можно сравнить время, прошедшее между каждой такой заменой и ближайшей предшествующей ей реассортацией, с тем, которое бы ожидалось из компьютерной модели, если бы реассортации не влияли на замены. Проведенный анализ показал, что по крайней мере в пяти из восьми сегментов генома мутации ускоренно накапливаются после реассортации. Наиболее ярко эффект проявился для нейраминидазы и белка PB1. Ускорение аминокислотных замен после реассортаций вирусных геномов указывает на то, что в такие периоды эволюции вируса гриппа прежде всего происходит адаптация белков к новому генетическому окружению. Из-за того, что вирусные белки взаимодействуют между собой, молекулы из разошедшихся штаммов вынуждены какое-то время изменяться, приспосабливаясь друг к другу.

Интересно, что у нейраминидаз наблюдалось 30 замен, расстояние от которых до ветви, несущей реассортацию, меньше того эволюционного расстояния, на котором мы бы ожидали встретить одну случайную синонимичную замену в гене данного белка. Такой результат свидетельствует о том, что все эти 30 мутаций произошли и закрепились необычайно быстро, и что необходимость быстрой адаптации возникла именно благодаря тому, что соответствующий сегмент генома попал в новое генетическое окружение.

Реассортация — это резкое эволюционное изменение, которое поначалу может снижать общую приспособленность вируса к условиям окружающей среды и к организму-хозяину. Однако иногда оказывается, что из-за такой перетасовки белков из разных штаммов новая форма патогена оказывается более приспособленной, чем штаммы-предшественники, получая возможность эффективнее распространиться [18]. Похоже, что за коррекцию первичного вредного эффекта от реассортации как раз и отвечают быстро закрепляющиеся адаптивные мутации.

Предсказания, полученные только статистическими методами, — путем анализа последовательностей белков и кодирующих их генов, — конечно, не могут иметь стопроцентную точность. Действительно ли взаимодействуют две определенные аминокислоты, можно проверить экспериментально. Однако каждый белок вируса состоит из сотен аминокислот, так что возможны десятки тысяч разных взаимодействий. Постановка такого числа экспериментов практически неосуществимы. Биоинформатический анализ позволяет расставлять приоритеты: выбирать и анализировать только те аминокислоты, которые участвуют во взаимодействиях, экономя время и силы экспериментаторов. Кроме того, такой подход позволяет понять, насколько взаимодействия, приводящие к вредности реассортаций, распространены на уровне всего генома.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 13-04-02098) и Министерства образования и науки Российской Федерации (проект 11.G34.31.0008).

Литература
1. Steinhauer D. A., Domingo E., Holland J. J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase // Gene. 1992. V. 22. № 2. P. 281–288.
2. Teng Q., Hu T., Li X. et al. Complete genome sequence of an H3N2 avian influenza virus isolated from a live poultry market in Eastern China // J. Virol. 2012. V. 86. № 21. P. 11944. DOI: 10.1128/JVI.02082-12.
3. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin // Cell. 1993. V. 73. № 4. P. 823–832.
4. Arranz R., Coloma R., Chichуn F. J. et al. The structure of native influenza virion ribonucleoproteins // Science. 2012. V. 338. № 6114. P. 1634–1637. DOI: 10.1126/science.1228172.
5. Kamali A., Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review // Infection and Drug Resistance. 2013. № 6. P. 187–198. DOI: 10.2147/IDR.S36601.
6. Nayak D. P., Hui E. K., Barman S. Assembly and budding of influenza virus // Virus Res. 2004. V. 106. № 2. P. 147–165.
7. Lear J. D. Proton conduction through the M2 protein of the influenza A virus; a quantitative, mechanistic analysis of experimental data // FEBS Lett. 2003. V. 552. № 1. P. 17–22.
8. Hale B. G., Randall R. E., Ortнn J. et al. The multifunctional NS1 protein of influenza A viruses // J. Gen. Virol. 2008. V. 89. № 10. P. 2359–2376. DOI: 10.1099/vir.0.2008/004606-0.
9. Robb N. C, Smith M., Vreede F. T. et al. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome // J. Gen. Virol. 2009. V. 90. № 6. P. 1398–1407. DOI: 10.1099/vir.0.009639-0.
10. El Zowalaty M. E., Bustin S. A., Husseiny M. I. et al. Avian influenza: virology, diagnosis and surveillance // Future Microbiol. 2013. V. 8. № 9. P. 1209–1227. DOI: 10.2217/fmb.13.81.
11. Kaplan B. S., Webby R. J. The avian and mammalian host range of highly pathogenic avian H5N1 influenza // Virus Res. 2013. V. 178. № 1. P. 3–11. DOI: 10.1016/j.virusres.2013.09.004.
12. Kilbourne E. D. Influenza pandemics of the 20th century // Emerg. Infect. Dis. 2006. V. 12. № 1. P. 9–14.
13. Suzuki Y. A phylogenetic approach to detecting reassortments in viruses with segmented genomes // Gene. 2010. V. 464. № 1–2. P. 11–16. DOI: 10.1016/j.gene.2010.05.002.
14. Nagarajan N., Kingsford C. GiRaF: robust, computational identification of influenza reassortments via graph mining // Nucleic Acids Research. 2011. V. 39. № 6. e34. DOI: 10.1093/nar/gkq1232.
15. Neverov A. D., Lezhnina K. V., Kondrashov A. S., Bazykin G. A. Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes // PLoS Genet. 2014. V. 10. № 1. e1004037. DOI: 10.1371/journal.pgen.1004037
16. Wolf Y. I., Viboud C., Holmes E. C. et al. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus // Biol. Direct. 2006. V. 1. P. 34.
17. Kryazhimskiy S., Dushoff J., Bazykin G. A. et al. Prevalence of epistasis in the evolution of influenza A surface proteins // PLoS Genet. 2011. V. 7. № 2. e1001301. DOI: 10.1371/journal.pgen.1001301.
18. Li K. S., Guan Y., Wang J. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia // Nature. 2004. V. 430. № 6996. P. 209–213.
19. Ferguson N. M., Fraser C., Donnelly C. A. et al. Public health. Public health risk from the avian H5N1 influenza epidemic // Science. 2004. V. 304. № 5673. P. 968–969.
20. Yong E. Influenza: Five questions on H5N1 // Nature. 2012. V. 486. № 7404. P. 456–458. DOI: 10.1038/486456a.
21. Herfst S., Schrauwen E. J., Linster M. et al. Airborne transmission of influenza A/H5N1 virus between ferrets // Science. 2012. V. 336. № 6088. P. 1534–1541. DOI: 10.1126/science.1213362.
22. Imai M., Watanabe T., Hatta M. et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets // Nature. 2012. V. 486. № 7403. P. 420–428. DOI: 10.1038/nature10831.
23. Russell C. A., Fonville J. M., Brown A. E. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host // Science. 2012. V. 336. № 6088. P. 1541–1547. DOI: 10.1126/science.1222526.

Мимивирус — род вирусов, включающий в себя единственный опознанный вид Acanthamoeba polyphaga mimivirus (APMV). В обиходе APMV обычно называют просто мимивирусом. До октября 2011 года, когда был описан ещё более крупный вирус Megavirus chilensis [3] данный вирус считался обладающим наибольшим диаметром капсида из всех известных вирусов, а также, по сравнению с другими вирусами, более объёмным (более 1,2 миллионов пар нуклеотидов) и сложноструктурированным геномом. В свете нехватки точных данных о природе данного вируса его открытие вызвало большой интерес в научных кругах. Было высказано предположение, что мимивирус представляет собой недостающее звено между вирусами и бактериями. Более радикальное мнение говорит о том, что мимивирус представляет собой принципиально новую форму жизни, не относящуюся к вирусам или бактериям.

Содержание

Этимология названия

Открытие

Существует гипотеза, что мимивирус может вызывать у людей некоторые формы пневмонии. До сих пор были найдены лишь косвенные свидетельства в пользу этой гипотезы в виде антител к вирусу, обнаруженных у пациентов, страдающих пневмонией [6] [7] .

Классификация

Мимивирус не был до сих пор помещён Международным комитетом по таксономии вирусов в какое-либо семейство, но на основании данных, полученных при исследовании метагенома, предполагается существование дополнительных членов семейства Mimiviridae [8] . По классификации по Балтимору мимивирус был отнесён к группе I. По этой классификации мимивирус входит в группу вирусов, содержащих двуцепочечную ДНК и не имеющих РНК-стадии. В эту группу входят такие семейства вирусов, как иридовирусы, поксвирусы, и другие. Все эти вирусы отличаются крупными размерами, схожими молекулярными характеристиками и сложными геномами [5] .

Ряд белков мимивируса, принимающих участие в репликации генома, оказались гомологичными белкам других крупных ядерно-цитоплазматических ДНК-содержащих вирусов (поксвирусы, иридовирусы, фикоднавирусы), что говорит об их общем происхождении. Тем не менее, большое количество мимивирусных белков не обнаруживают сходства ни с одним известным в настоящее время белком. Кроме того, геном мимивируса кодирует значительное количество белков, напоминающих эукариотические и бактериальные. По-видимому, эти гены были приобретены мимивирусом вторично и происходят из геномов хозяев вируса и их паразитов [9] .

В 2012 году группа П. Колсона предложила по результатам исследований геномов некоторых давно известных и недавно открытых крупных вирусов, сгруппировать их в отдельный порядок Megavirales [10] .

Структура




Мимивирус, обладая капсидом диаметром 400 нм с многочисленными 100-нанометровыми белковыми нитями на нём, является крупнейшим известным на сегодняшний день вирусом. В научной литературе приведены размеры вириона от 400 нм до 800 нм, в зависимости от того, замеряется ли диаметр капсида или общая длина вируса в продольной оси. В электронном микроскопе можно наблюдать гексагональную форму капсида, что указывает на икосаэдральную симметрию белковых структур капсида [11] . У мимивируса не наблюдается внешней оболочки, что указывает на то, что мимивирус покидает заражённую клетку не путём экзоцитоза [12] .

Научная группа открывшая мимивирус открыла также Sputnik virophage паразитирующий на нём, а также чуть более крупный вирус названный mamavirus [13] .

Мимивирус обладает многими особенностями строения, характерными и для других вирусов своей группы. Липидный слой, которым выстлана внутренняя поверхность капсида и который был найден у всех этих вирусов, по предположению М. Сьюзан-Монти (M. Suzan-Monti) с соавторами также присутствует и у мимивируса. Центральная часть вируса, содержащая в себе ДНК, выглядит под электронным микроскопом как тёмноокрашенная область.

Из очищенных вирионов были выделены несколько различных мРНК, кодирующих ДНК-полимеразу, белки капсиды и факторы транскрипции, близкие к TFII. Также были найдены мРНК, кодирующие аминоацил тРНК синтетазу, и 4 неидентифицированных молекулы мРНК, специфичных для мимивируса [14] . Эти мРНК могут быть транслированы без экспрессии вирусных генов и, по всей видимости, необходимы мимивирусу для репликации. Другие ДНК-содержащие вирусы, такие как цитомегаловирус (Cytomegalovirus) и вирус простого герпеса (Herpes simplex virus type-1), также содержат мРНК [12] .

Геном

Геном мимивируса состоит из линейной молекулы ДНК, содержащей около 1 185 000 пар оснований [15] . Это крупнейший геном среди всех известных науке вирусов — он в два раза длиннее, чем следующий по размеру геном миовируса Bacillus phage G. Кроме того, мимивирус обладает бо́льшим объёмом генетической информации, чем как минимум 30 организмов, имеющих клеточное строение [16] .

Вдобавок к уникальному для вирусов размеру генома, мимивирус обладает примерно 911 генами, кодирующими белок, что гораздо больше 4 необходимых каждому вирусу генов [17] . Анализ генома показал наличие генов, не присутствующих ни у каких других вирусов, в частности, кодирующих аминоацил-тРНК синтазу и других, обнаруженных только у организмов с клеточным строением. Как и другие большие ДНК-содержащие вирусы, мимивирус содержит набор генов для кодирования ферментов углеводного, липидного и аминокислотного метаболизма, однако среди них есть и такие, которые не найдены у других вирусов [12] , как например набор генов для кодирования механизма гликолизации независимого от амёбы [18] .

Примерно 10 % генома приходится на интроны (некодирующие участки ДНК).

Геном мимивируса и эволюция ДНК-содержащих вирусов

Альтернативная гипотеза вирусного эукариогенеза, напротив, предполагает возникновение ядра эукариотических клеток из крупных ДНК-содержащих вирусов, подобных мимивирусам [19] .

Ряд белков мимивируса, принимающих участие в репликации генома, оказались гомологичными белкам других крупных ядерно-цитоплазматических ДНК-содержащих вирусов, что говорит об их общем происхождении. Тем не менее мимивирус оказался своего рода рекордсменом по количеству уникальных генов, не имеющих сходства ни с одним белком, известным в настоящее время, и поэтому некоторые учёные посчитали мимивирус генетическим реликтом, близким к общему предку крупных ДНК-содержащих вирусов. С изучением мимивируса связывали надежду получить информацию об этом общем предке.

Кроме того, геном мимивируса кодирует значительное количество белков, напоминающих эукариотические и бактериальные. По-видимому, эти гены были приобретены мимивирусом вторично и происходят из геномов хозяев вируса и их паразитов.

Ещё одним интересным свойством генома мимивируса оказалось наличие большого количества гомологичных копий одних и тех же генов. По-видимому, некоторые гены предка мимивируса подверглись дупликации, а затем эволюционировали независимо друг от друга. Это наблюдение позволили некоторым учёным предположить, что экстраординарные размеры генома мимивируса объясняются не столько его близостью к гипотетическому предку, сколько особенностями занимаемой им экологической ниши, накладывающей меньшие ограничения на размеры генома. [9]

Репликация

Стадии репликации мимивируса всё ещё слабо изучены. Известно, что мимивирус присоединяется к рецепторам на поверхности клеток амёбы и попадает внутрь клетки. Внутри вирус распадается, а инфицированная клетка продолжает нормальную жизнедеятельность. Примерно через 4 часа внутри амёбы начинают появляться уплотнения, через 8 часов после инфицирования в клетке уже хорошо различимо множество вирионов мимивируса. Цитоплазма продолжает наполняться новыми вирионами, и через 24 часа после инфекции клетка разрывается и высвобождает их [12] .

Мимивирус обладает многими свойствами, которые помещают его на границу живого и неживого. По своим размерам он превосходит некоторых бактерий, таких как Rickettsia conorii или Tropheryma whipplei, содержит геном, сопоставимый по размеру с геномом многих бактерий (в том числе вышеназванных), и имеет гены, не найденные у других вирусов, в том числе кодирующие ферменты синтеза нуклеотидов и аминокислот, которые отсутствуют даже у некоторых мелких бактерий-внутриклеточных паразитов. Это означает независимость мимивируса (в отличие от указанных бактерий) от генома клетки-хозяина, кодирующего основные метаболические пути. Однако мимивирус не имеет генов синтеза рибосомальных белков, из-за чего он испытывает необходимость в рибосомах хозяина. Сочетание этих свойств вызвало в научной среде споры, является ли мимивирус особой формой жизни, доменом, наряду с эукариотами, бактериями и археями [20] .

Тем не менее, мимивирус не обладает гомеостазом, не отвечает на раздражители, не растёт и не размножается самостоятельно (вместо этого синтезируется клеткой и самособирается в ней из отдельных компонентов), что типично для вирусов.

Гены, свойственные мимивирусу (в том числе кодирующие белки капсида), сохраняются во множестве вирусов, поражающих организмы всех трёх доменов. На основании этого факта делается предположение, что мимивирус связан с ДНК-содержащими вирусами, которые появились одновременно с наиболее древними организмами, имеющими клеточное строение, и занимают ключевое положение в происхождении жизни на Земле [21] .

Листоблошки оказались обладателями удивительных симбионтов — бактерий с самым маленьким в мире геномом (фото с сайта hortipm.tamu.edu)

Как и у других внутриклеточных симбионтов, у карсонеллы наблюдаются три характерных признака генетической деградации: 1) сокращение генома в результате потери почти всех некодирующих участков ДНК и значительной части генов, 2) резкое преобладание в ДНК нуклеотидов А и Т и, соответственно, низкое содержание Г и Ц, 3) быстрая молекулярная эволюция, то есть повышенный темп изменения ДНК в ряду поколений.

По первому и второму пункту карсонелла побила все прежние рекорды (см. рис.). Ее геном втрое меньше, чем у архебактерии Nanoarchaeum equitans, которая живет в гидротермальных источниках и паразитирует на другой архебактерии — Ignicoccus — и одной из разновидностей бактерии Buchnera, внутриклеточного симбионта тлей. У этих двух прокариот размер генома составляет 450–490 тысяч пар оснований (т.п.о.), и раньше именно они считались рекордсменами генетического упрощения. Карсонелла с ее 160 т.п.о. оставляет конкурентов далеко позади.

Размер генома и процентное содержание Г + Ц в 358 прочтенных геномах прокариот. Синие точки — внутриклеточные симбионты насекомых бактерии Buchnera, Blochmannia, Wigglesworthia и Baumannia (в некоторых случаях прочтены геномы нескольких штаммов одного и того же вида бактерии); желтые — другие бактерии, зеленые — археи. Справа внизу — бактериоцит листоблошки Pachypsylla venusta, наполненный бактериями Carsonella (извилистые структуры). Рис. из статьи в Science

Размер генома и процентное содержание Г + Ц в 358 прочтенных геномах прокариот. Синие точки — внутриклеточные симбионты насекомых бактерии Buchnera, Blochmannia, Wigglesworthia и Baumannia (в некоторых случаях прочтены геномы нескольких штаммов одного и того же вида бактерии), желтые — другие бактерии, зеленые — археи. Справа внизу — бактериоцит листоблошки Pachypsylla venusta, наполненный бактериями Carsonella (извилистые структуры). Рис. из статьи в Science

Этот случай показывает, что геном внутриклеточных симбионтов может, по-видимому, упрощаться почти до полного исчезновения — как это произошло с митохондриями, которые тоже когда-то были симбиотическими бактериями. Митохондриальный геном по размеру сопоставим с геномом карсонеллы. Типичные размеры митохондриальных геномов: 40–100 т.п.о. у низших эукариот, 200–400 т.п.о у растений, 15–20 т.п.о. у животных.

Само собой разумеется, что карсонелла не может жить вне клеток хозяина и передается только вертикально — от матери к ее детям (как и митохондрии). Авторы отмечают, что сохранившихся у карсонеллы генов явно недостаточно для поддержания ее жизни даже с учетом того, что она может пользоваться всеми благами внутриклеточного существования. Очевидно, что специализированные хозяйские клетки — бактериоциты — вполне целенаправленно поддерживают жизнь симбионтов. Авторы даже допускают, что многие гены, утраченные предками карсонеллы, были перенесены в геном хозяина, где они продолжают функционировать, обеспечивая бактерию необходимыми веществами извне. Именно это произошло когда-то с генами предков митохондрий.

Источник: Atsushi Nakabachi, Atsushi Yamashita, Hidehiro Toh, Hajime Ishikawa, Helen E. Dunbar, Nancy A. Moran, Masahira Hattori. The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella // Science. 2006. V. 314. P. 267.


История вирусов начинается с открытия вируса табачной мозаики Д.И. Ивановским в 1892 г. Через несколько лет были открыты вирусы животных, а затем и бактериофаги. Тогда вирусы считали просто очень мелкими микробами, не способными расти на искусственных питательных средах, а бактериофаги вообще не относили к живым системам, считая их противомикробными агентами вроде ферментов.

Вирусы – субмикроскопические (т.е. не видимые с помощью светового микроскопа) объекты размером обычно 20–200 нм, состоящие из генетического материала (одно- или двухцепочечной ДНК или РНК), окруженного белковым или белково-липидным чехлом, или капсидом. Отдельную вирусную частицу называют вирионом.

К 60-м гг. прошлого века были идентифицированы многие вирусы. Изучение их строения и способов размножения показало, что под принятое тогда определение организма вирусы не попадают, поскольку не обладают собственной системой синтеза белка и способ их размножения также отличается от способов размножения всех других организмов (деление, почкование и т.д.). В журнале Nature в апреле этого года французские микробиологи предложили новый подход к классификации организмов. Авторы считают, что организмы можно разделить на две основные группы: рибосомальные (эукариоты, археи и бактерии) и капсидные (вирусы). Для других самовоспроизводящихся частиц (плазмиды, вироиды и др.) предложено название orphan replicons (репликоны-сироты), для которого пока нет перевода на русский язык. При таком подходе вирусы приобретают законный статус полноценного организма. Изменению точки зрения на место вирусов в живой природе немало способствовали открытия последних лет, о которых речь пойдет ниже.

Вирусы, не имея собственного метаболизма, ведут исключительно паразитический образ жизни, используя в своих целях биохимический аппарат клетки хозяина. Вирионы не способны к активному движению и перемещаются либо с потоками жидкости или газа, либо путем пассивной диффузии. Контакт вируса с клеткой происходит в результате случайной встречи. Для прикрепления к клетке-хозяину и проникновения в нее вирусы используют специфические для данной клетки поверхностные белки, часто белки-переносчики. После проникновения в клетку вирус начинает размножаться.

При размножении вируса вирионы образуются либо полностью самостоятельно путем самосборки из белков и нуклеиновых кислот, синтезированных в разное время и в разных местах, либо с участием клетки-хозяина (некоторые фаги, оболочечные вирусы). Хотя вирион и является индивидуальной вирусной частицей, но на этой стадии вирус не проявляет активной жизнедеятельности – она начинается после разрушения вириона при контакте с клеткой-хозяином.

Среди вирусов есть и неполноценные, или дефектные, виды. Многие онкогенные ретровирусы являются дефектными, т.к. приобретение онкогенов часто сопровождается делециями остальных генов. В присутствии биологически близких полноценных вирусов-помощников дефектный вирус может либо реплицироваться, либо использовать белки вируса-помощника. Очень важно, что дефектные вирусы могут использовать белки и биологически отдаленных видов. Например, дефектный по оболочечным белкам ретровирус, размножаясь в присутствии вируса везикулярного стоматита, заимствует его внешнюю оболочку. Впрочем, при смешанной инфекции несколькими нормальными вирусами часто образуются вирионы с оболочками других вирусов.

Существует несколько групп вирусов, которые всегда дефектны по репликации и являются сателлитами неродственных им полноценных вирусов. Так, аденосателлиты имеют собственный геном и собственные белки и реплицируются в присутствии вирусов-помощников, которыми могут быть не только аденовирусы, но и герпесвирусы. Эти три группы (дефектные вирусы и две группы вирусов-помощников) являются ДНК-содержащими вирусами. РНК-содержащий вирус некроза табака имеет также РНК-содержащий вирус-сателлит, геном которого кодирует собственные белки. Сателлитом ДНК-содержащего вируса гепатита (гепаднавируса) является РНК-содержащий дельта-вирус, реплицирующийся и образующий нуклеокапсиды из собственного белка в присутствии любого гепаднавируса, внешнюю оболочку которого он потом и использует.

Сходными с сателлитами свойствами обладают плазмиды. Это относительно небольшие кольцевые, реже линейные, молекулы ДНК с молекулярной массой обычно менее 10 7 Да, которые часто обнаруживаются в бактериальных клетках. Плазмиды обычно находятся в свободном виде в цитоплазме, но могут и быть включены в геном клетки-носителя, причем клетка может от них освобождаться. Гены, содержащиеся в плазмидах, могут обеспечивать синтез очень разных по выполняемым фунциям белков: токсинов, убивающих насекомых, факторов опухолевого роста у растений, ферментов, разрушающих или модифицирующих антибиотики, факторов фертильности, индуцирующих половой процесс у бактерий. Однако гены плазмид, в отличие от вирусов (как нормальных, так и дефектных) и сателлитов, никогда не кодируют белки капсидов, в которые упаковываются нуклеиновые кислоты, и репликацию их обеспечивает клетка. Кстати, в клетках дрожжей были обнаружены подобные структуры – двунитевые РНК, названные киллерами, которые кодируют токсины, убивающие дрожжевые клетки, не имеющие киллеров.

Между плазмидами и обычными вирусами нет резких границ. Так, некоторые плазмиды явно являются производными фагов, утратившими большую часть генов и сохранившими лишь некоторые из них. Ряд вирусов, например вирус папилломы коров, могут длительно персистировать, т.е. находиться в неактивном, латентном, состоянии (такое состояние характерно для вирусов эукариот и соответствует лизогении у фагов) в виде плазмид. Также в виде плазмид с полным или частично делетированным геномом могут персистировать вирусы герпеса.

Развитие генной инженерии сделало возможным не только искусственное получение плазмид из вирусной ДНК, но и встройку в плазмиды чужеродных генов и даже искусственное конструирование плазмид из фрагментов клеточной ДНК.

Возбудителями некоторых инфекционных болезней растений являются вироиды – небольшие (молекулярная масса 120–160 кДа) кольцевые суперспирализированные молекулы РНК. Заболевания, вызванные вироидами, в основном напоминают типичные вирусные болезни: заражение происходит при механической передаче вироидов, которые и начинают размножаться в зараженных клетках. Симптомы болезни напоминают течение вирусной инфекции.

Мимивирус

Мимивирус: а - мимивирусы внутри амебы; б и в - микрофотографии мимивируса

Период важных открытий в области микробиологии начался, по-видимому, в 1992 г., когда в ходе исследований, проведенных после вспышки пневмонии в Брэдфорде (Великобритания), в амебах (Acanthamoeba polyphaga), обитавших в воде градирни, был обнаружен микроорганизм, схожий с грамположительными кокками (сначала его так и назвали – брэдфордкокк). Однако все попытки выделить из этого организма рибосомальную РНК (16S rRNA) для стандартного анализа окончились неудачей. Лишь в марте 2003 г. в журнале Science была опубликована статья французских вирусологов с описанием этого микроорганизма, который оказался самым большим из известных вирусов. Из-за сходства с бактерией (мимикрии) он был назван мимивирусом (Mimivirus) и как единственный представитель отнесен к классу мимивиридов группы больших ДНК-содержащих нуклео-цитоплазматических вирусов (NCLDV) т.е. вирусов, репликация которых проходит в цитоплазме и ядре клетки-хозяина.

Вирион мимивируса представляет собой характерный для вирусов икосаэдр (правильный 20-гранник, каждая грань которого – правильный треугольник), к которому прикреплены фибриллы длиной 80 нм. Размерами (400 нм) вирион сравним с такими бактериями, как микоплазма и уреаплазма. По первым оценкам геном мимивируса, представляющий собой линейную хромосому – двойную спираль ДНК, содержал 800 тыс. пар оснований (тпо), что больше, чем у упомянутых бактерий (580 и 752 тпо соответственно).

Это стимулировало расшифровку генома вируса-гиганта. В ноябре 2004 г. в журнале Science расшифрованный геном был опубликован. Оказалось, что он содержит 1181,404 тпо и имеет 1262 предполагаемых открытых рамок считывания (ОРС), из которых 10% соответствуют белкам с известными функциями. Через год было установлено, что геном мимивируса содержит 911 генов белков.

Мимивирус по многим свойствам отличается от своих ближайших родственников по группе больших вирусов NCLDV. Самое удивительное – это не размеры генома, а его содержание. Мимивирус содержит стандартный для всех вирусов группы NCLDV (вирусы оспы, иридовирусы, асфарвирусы и фикоднавирусы) набор характеристических генов (core genes – не изменяющиеся или мало меняющиеся гены, характерные для группы геномов). Однако анализ гомологий генов и утраченных факультативных характеристических генов показал, что мимивирус не родствен ни одному из известных семейств группы NCLDV. Скорее всего, он является первым представителем нового семейства вирусов этой группы. Вдобавок ко всему, геном мимивируса содержит гены, до этого никогда не встречавшиеся у вирусов. Так, в нем содержится информация о многих важных компонентах системы синтеза белков.

Важнейшими ферментами, определяющими перевод генетического кода на язык белков, являются аминоацил-тРНК-синтетазы (ааРС). Они выполняют одну и ту же ключевую роль во всех клеточных организмах (и поэтому очень консервативны). Однако даже в самых сложных вирусах, в частности из группы NCLDV, синтетазы не обнаружены.

В прошлом году группа французских микробиологов, исследуя геном мимивируса, пришла к выводу, что этот вирус использует четыре собственные синтетазы, а также полный набор факторов трансляции: инициации, элонгации и терминации. Анализ структуры ферментов показал, что функционально они в целом аналогичны ферментам архей и эукариот, хотя имеют существенные отличия в сайте связывания антикодона и обладают уникальной димерной конформацией. Пока не ясно, зачем вирусу нужны собственные ферменты (и как они взаимодействуют с клеточными ферментами), но в инфицированной амебе используются именно эти синтетазы. Из результатов филогенетического анализа следует, что гены синтетаз мимивирус получил не в результате недавнего горизонтального переноса от клетки-хозяина, что ставит под сомнение гипотезу об эукариотических предках больших ДНК-содержащих вирусов. В геноме мимивируса содержатся также гены шести тРНК, топоизомераз типа I и II, компоненты всех путей восстановления повреждений ДНК, нескольких ферментов синтеза полисахаридов, а также один сегмент, кодирующий интеин.

Филогенетическое древо больших ДНКсодержащих вирусов.
В правом верхнем углу приведены масштабы для сравнения размеров капсидов и геномов;
длины ветвей дерева соответствуют количеству замен в геноме

Вирофаг

Вирофаг: а - размножение вирофага (указан стрелками) в вирусной фабрике мимивируса в цитоплазме амебы; б - вирионы вирофага внутри вириона мимивируса; в - типичный дефект развития мимивируса, вызываемый вирофагом

Учитывая функциональную аналогию спутника с бактериофагами, ученые предлагают классифицировать его как вирофаг. Так же как и бактериофаги, вирофаг может способствовать горизонтальному переносу генов между гигантскими вирусами. Однако пока не установлено, имеет ли спутник стадию профага, когда его геном встраивается в геном вируса-хозяина.

Сразу после открытия мимивируса было показано, что по набору характеристических генов он родствен группе больших вирусов NCLDV. Однако из-за других особенностей его выделили в единственного представителя семейства Mimiviridae. Для установления путей эволюции мимивируса очень важно найти других представителей этого семейства. Акантамеба, организм-хозяин мимивируса, обитает в реках, пресных и соленых озерах, морях, в почве, ее выделяют и из фильтратов атмосферного воздуха. Поэтому мимивирус потенциально может быть обнаружен везде.

Анализ данных из общедоступных библиотек нуклеотидных последовательностей, обнаруживаемых в окружающей среде (так называемые метагеномные данные), показал, что последовательности, сходные с генами мимивируса, содержатся в водах Саргассова моря. Эти результаты были подтверждены анализом самых последних и более полных метагеномных данных, при этом был сделан вывод, что гены, родственные генам мимивируса, попадают в Саргассово море из больших ДНК-содержащих вирусов, инфицирующих фитопланктон. Таким образом, микроводоросли могут быть потенциальным новым хозяином мимивирусов. Так ли это, покажут дальнейшие исследования.

Таблица. Самые большие вирусные геномы в сравнении с самыми маленькими геномами прокариот. На один ген приходится в среднем около 1 тпо

Размер генома (тпо)

Дата расшифровки

Mimivirus
Treponema pallidum
Rickettsia prowazekii
Chlamydia muridarum
Chlamydia trachomatis
Mycoplasma pulmonis
Tropheryma whipplei
Onion yellows phytoplasma
Mycoplasma pneumoniae
Mycoplasma mobile
Ureaplasma parvum
Wigglesworthia glossinidia
Buchnera aphidicola
Mycoplasma genitalium
Nanoarchaeum equitans
Canarypox virus
Ectocarpus siliculosus virus
Paramecium bursaria Chlorella virus 1
Shrimp white spot syndrome virus
Human herpesvirus 5

Y653733
NC_000919
NC_000963
NC_002620
NC_000117
NC_002771
NC_004572
NC_005303
NC_000912
NC_006908
NC_002162
NC_004344
NC_004545
NC_000908
NC_005213
NC_005309
NC_002687
NC_000852
NC_003225
NC_001347

1 181 404
1 138 011
1 111 523
1 072 950
1 042 519
963 879
927 303
860 631
816 394
777 079
751 719
697 724
615 980
580 074
490 885
359 853
335 593
330 743
305 107
230 287

11.2004
09.2001
09.2001
10.2001
09.2001
10.2001
02.2003
12.2003
04.2001
05.2004
01.2000
07.2003
01.2003
01.2001
02.2004
01.2004
02.2001
02.1996
11.2001
03.1990


Обзор

Схема, иллюстрирующая возможное сходство систем CRISPR/Cas и MIMIVIRE.

Автор
Редактор

Вирофаги: вирусы вирусов

Вирусная фабрика в клетке амёбы, зараженной мимивирусом и вирофагом Замилон

Рисунок 1. Электронная микрофотография вирусной фабрики в клетке амёбы, зараженной мимивирусом и вирофагом Замилон. Стрелки указывают на дефектные частицы мимивируса (масштабная линейка — 0,1 мкм).

CRISPR/Cas: врожденный иммунитет прокариот

В 2016 году на страницах журнала Nature группа французских ученых сообщила об удивительном наблюдении. Как мы помним, вирофаг Замилон поражает только мимивирусы групп B и C, но не А. Оказалось, что у мимивирусов последней группы в геноме присутствуют четыре повторяющихся 15-нуклеотидных фрагмента ДНК Замилона — подозрительно похоже на спейсеры в системе CRISPR/Cas (рис. 2). Они входят в состав особой генетической системы, которая получила название MIMIVIRE (от англ. MIMIvirus VIrophage Resistant Element). Интересно, что единичные копии фрагментов ДНК Замилона находят и в геномах некоторых представителей групп B и C, однако для обеспечения резистентности, по-видимому, их недостаточно. Вставленный в геном мимивируса участок ДНК Замилона берется из ORF4, кодирующей белок, родственный транспозазе А — ферменту, который катализирует перемещение транспозонов по геному. (Примечательно, что у Спутника, способного поражать самые разные мимивирусы, подобного гена нет.) Сама же система MIMIVIRE находится в составе мимивирусного гена R349. При этом белковые продукты соседних генов демонстрируют некоторое сходство с белками Cas [7].

MIMIVIRE и CRISPR/Cas

Рисунок 2. Сравнение систем MIMIVIRE и CRISPR/Cas. Слева — система MIMIVIRE с последовательностями, происходящими из генома Замилона, справа — система CRISPR/Cas со спейсерами, показанными разными цветами.

Ученые решили подтвердить напрашивающуюся аналогию экспериментальными данными. Что будет, если с помощью РНК-интерференции отключить MIMIVIRE? Как это скажется на резистентности мимивирусов группы А к вирофагам?

Оказалось, что отключение и самогό гена R349, содержащего вставки ДНК Замилона, и соседних генов, похожих на Cas, многократно увеличивает количество ДНК вирофага в зараженных клетках. В случае отключения R349 — аж в 65 раз! Напрашивается вывод, что устойчивость мимивирусов группы А к Замилону действительно обеспечивается системой MIMIVIRE, работающей по аналогичному с CRISPR/Cas принципу: в мимивирусный геном вставляются участки ДНК вирофага, далее с них считывается РНК, комплементарно взаимодействующая с геномом вирофага, который затем разрушается белками, похожими на Cas. Так вирофаг лишается шансов на успешное размножение за счет вируса-хозяина [7].

Почему MIMIVIRE всё-таки не аналог CRISPR/Cas

Несмотря на всю привлекательность предположения, что мимивирусы защищаются от вирофагов с помощью системы, похожей на CRISPR/Cas, оно не может ответить на ряд вопросов и упирается в логические тупики [8].

В-третьих, система MIMIVIRE, по-видимому, не имеет жесткой структуры, характерной для всех мимивирусов группы А. Более того, у мимивирусов групп B и C ген R349 имеет совершенно другую последовательность (менее 35% идентичности) или сильно усечен. Прокариотический локус CRISPR, в который внедряются протоспейсеры, имеет четкую консервативную структуру: сначала идут гены белков Cas, потом — особая лидерная последовательность, а за ней — длинный ряд повторяющихся последовательностей, между которыми находятся спейсеры. Даже если принять на веру, что короткие последовательности, вставленные в MIMIVIRE, действительно заимствованы у Замилона, а не просто имеют случайное сходство с ним, то механизма для их целенаправленной и жестко контролируемой интеграции в геном мимивируса нет.

Альтернативный механизм работы MIMIVIRE

ORF4 Замилона и R349 мимивируса

Итак, система MIMIVIRE, судя по всему, действительно участвует в защите мимивируса от вирофага Замилон, однако предполагаемый механизм ее работы еще предстоит подтвердить экспериментально.

Читайте также: