Серологические методы для диагностики вирусных инфекций

Обновлено: 24.04.2024

Диагностика инфекционных заболеваний является одной из самых сложных проблем в клинической медицине. Лабораторные методы исследования при ряде нозологических форм играют ведущую, а в целом ряде клинических ситуаций решающую роль не только в диагностике, но и в определении конечного исхода заболевания.

Диагностика инфекционных заболеваний почти всегда предусматривает использование комплекса лабораторных методов.

  • бактериологические;
  • серологические;
  • метод полимеразной цепной реакции (ПЦР) для обнаружения ДНК или РНК возбудителя инфекционного заболевания в исследуемом материале.

У одних пациентов для диагностики этиологии инфекционно-воспалительного процесса достаточно провести бактериологическое исследование, в других клинических ситуациях решающее значение имеют данные серологических исследований, в третьих, предоставить полезную информацию может только метод ПЦР. Однако наиболее часто в клинической практике врачу-клиницисту необходимо использовать данные различных методов лабораторных исследований.

Бактериологические методы исследования

Бактериологические исследования наиболее часто проводят при подозрении на гнойно-воспалительные заболевания (составляют 40-60% в структуре хирургических заболеваний) с целью их диагностики, изучения этиологической структуры, определения чувствительности возбудителей к антибактериальным препаратам. Результаты бактериологических анализов способствуют выбору наиболее эффективного препарата для антибактериальной терапии, своевременному проведению мероприятий для профилактики внутрибольничных инфекций.

Возбудителями гнойно-воспалительных заболеваний являются истинно-патогенные бактерии, но наиболее часто условно-патогенные микроорганизмы, входящие в состав естественной микрофлоры человека или попадающие в организм извне. Истинно-патогенные бактерии в большинстве случаев способствуют развитию инфекционного заболевания у любого здорового человека. Условно-патогенные микроорганизмы вызывают заболевания преимущественно у людей с нарушенным иммунитетом.

Бактериологические исследования при заболеваниях, вызываемых условно-патогенными микроорганизмами, направлены на выделение всех микроорганизмов, находящихся в патологическом материале, что существенно отличает их от аналогичных исследований при заболеваниях, вызванных истинно патогенными микроорганизмами, когда проводится поиск определенного возбудителя.

Для получения адекватных результатов бактериологического исследования при гнойно-воспалительных заболеваниях особенно важно соблюдать ряд требований при взятии биоматериала для анализа, его транспортировки в лабораторию, проведения исследования и оценки его результатов.

  • микроскопическое исследование мазка (бактериоскопия) из доставленного биоматериала;
  • выращивание культуры микроорганизмов (культивирование);
  • идентификацию бактерий;
  • определение чувствительности к антимикробным препаратам и оценку результатов исследования.

Доставленный в бактериологическую лабораторию биоматериал первоначально подвергается микроскопическому исследованию.

Микроскопическое исследование мазка (бактериоскопия), окрашенного по Граму или другими красителями, проводят при исследовании мокроты, гноя, отделяемого из ран, слизистых оболочек (мазок из цервикального канала, зева, носа, глаза). Результаты микроскопии позволяют ориентировочно судить о характере микрофлоры, ее количественном содержании и соотношении различных видов микроорганизмов в биологическом материале, а также дают предварительную информации об обнаружении этиологически значимого инфекционного агента в данном биоматериале, что позволяет врачу сразу начать лечение (эмпирическое). Иногда микроскопия позволяет выявить микроорганизмы, плохо растущие на питательных средах. На основании данных микроскопии проводят выбор питательных сред для выращивания микробов, обнаруженных в мазке.

Культивирование микроорганизмов. Посев исследуемого биоматериала на питательные среды производят с целью выделения чистых культур микроорганизмов, установления их вида и определения чувствительности к антибактериальным препаратам. Для этих целей используют различные питательные среды, позволяющие выделить наибольшее количество видов микроорганизмов. Оптимальными являются питательные среды, содержащие кровь животного или человека, а также сахарный бульон, среды для анаэробов. Одновременно производят посев на дифференциально-диагностические и селективные (предназначенные для определенного вида микроорганизмов) среды. Посев осуществляют на стерильные чашки Петри, в которые предварительно заливают питательную среду для роста микроорганизмов.

Микроскопия мазков, окрашенных по Граму

1 - стрептококки; 2 - стафилококки; 3 - диплобактерии Фридленда; 4 - пневмококки

Колонии отсевают на плотные, жидкие, полужидкие питательные среды, оптимальные для культивирования определенного вида бактерий.

Выделенные чистые культуры микроорганизмов подвергают дальнейшему изучению в диагностических тестах, основанных на морфологических, ферментативных, биологических свойствах и антигенных особенностях, характеризующих бактерий соответствующего вида или варианта.

Определение чувствительности к антибактериальным препаратам. Чувствительность к антимикробным препаратам изучают у выделенных чистых культур микроорганизмов, имеющих этиологическое значение для данного заболевания. Поэтому в направлении на бактериологические анализы требуется указать диагноз заболевания у больного. Определение чувствительности бактерий к спектру антибиотиков помогает лечащему врачу правильно выбрать препарат для лечения больного.

Оценка результатов исследования. Принадлежность условно-патогенных микроорганизмов к естественной микрофлоре организма человека создает ряд трудностей при оценке их этиологической роли в развитии гнойно-воспалительных заболеваний. Условно-патогенные микроорганизмы могут представлять нормальную микрофлору исследуемых жидкостей и тканей или контаминировать их из окружающей среды. Поэтому для правильной оценки результатов бактериологических исследований необходимо знать состав естественной микрофлоры изучаемого образца. В тех случаях, когда исследуемый биоматериал в норме стерилен, как, например, спинномозговая жидкость, экссудаты, все выделенные из него микроорганизмы могут считаться возбудителями заболевания. В тех случаях, когда исследуемый материал имеет собственную микрофлору, как, например, отделяемое влагалища, кал, мокрота, нужно учитывать изменения ее качественного и количественного состава, появление несвойственных ему видов бактерий, количественную обсемененность биоматериала. Так, например, при бактериологическом исследовании мочи степень бактериурии (число бактерий в 1 мл мочи), равная и выше 10 5 , свидетельствует об инфекции мочевых путей. Более низкая степень бактериурии встречается у здоровых людей и является следствием загрязнения мочи естественной микрофлорой мочевых путей.

Установить этиологическую роль условно-патогенной микрофлоры помогают также нарастание количества и повторность выделения бактерий одного вида от больного в процессе заболевания.

Врач-клиницист должен знать, что положительный результат бактериологического исследования в отношении биологического материала, полученного из в норме стерильного очага (кровь, плевральная жидкость, спинномозговая жидкость, пунктат органа или ткани), всегда тревожный результат, требующий немедленных действий по оказанию медицинской помощи.

Серологические методы исследования

В основе всех серологических реакций лежит взаимодействие антигена и антитела. Серологические реакции используются в двух направлениях.

2. Установление родовой и видовой принадлежности микроба или вируса. В этом случае неизвестным компонентом реакции является антиген. Такое исследование требует постановки реакции с заведомо известными иммунными сыворотками.

Серологические исследования не обладают 100%-й чувствительностью и специфичностью в отношении диагностики инфекционных заболеваний, могут давать перекрестные реакции с антителами, направленными к антигенам других возбудителей. В связи с этим оценивать результаты серологических исследований необходимо с большой осторожностью и учетом клинической картины заболевания. Именно этим обусловлено использование для диагностики одной инфекции множества тестов, а также применение метода Western-blot для подтверждения результатов скрининговых методов.

В последние годы прогресс в области серологических исследований связан с разработкой тест-систем для определения авидности специфических антител к возбудителям различных инфекционных заболеваний.

Авидность - характеристика прочности связи специфических антител с соответствующими антигенами. В ходе иммунного ответа организма на проникновение инфекционного агента стимулированный клон лимфоцитов начинает вырабатывать сначала специфические IgM-антитела, а несколько позже и специфические IgG-антитела. IgG-антитела обладают поначалу низкой авидностью, то есть достаточно слабо связывают антиген.

Затем развитие иммунного процесса постепенно (это могут быть недели или месяцы) идет в сторону синтеза лимфоцитами высокоспецифичных (высокоавидных) IgG-антител, более прочно связывающихся с соответствующими антигенами. На основании этих закономерностей иммунного ответа организма в настоящее время разработаны тест-системы для определения авидности специфических IgG-антител при различных инфекционных заболеваниях.

Высокая авидность специфических IgG-антител позволяет исключить недавнее первичное инфицирование и тем самым с помощью серологических методов установить период инфицирования пациента. В клинической практике наиболее широкое распространение нашло определение авидности антител класса IgG при токсоплазмозе и цитомегаловирусной инфекции, что дает дополнительную информацию, полезную в диагностическом и прогностическом плане при подозрении на эти инфекции, в особенности при беременности или планировании беременности.

Метод полимеразной цепной реакции

Полимеразная цепная реакция (ПЦР), являющаяся одним из методов ДНК-диагностики, позволяет увеличить число копий детектируемого участка генома (ДНК) бактерий или вирусов в миллионы раз с использованием фермента ДНК-полимеразы. Тестируемый специфический для данного генома отрезок нуклеиновой кислоты многократно умножается (амплифицируется), что позволяет его идентифицировать.

Сначала молекула ДНК бактерий или вирусов нагреванием разделяется на 2 цепи, затем в присутствии синтезированных ДНК-праймеров (последовательность нуклеотидов специфична для определяемого генома) происходит связывание их с комплементарными участками ДНК, синтезируется вторая цепь нуклеиновой кислоты вслед за каждым праймером в присутствии термостабильной ДНК-полимеразы. Получается две молекулы ДНК. Процесс многократно повторяется. Для диагностики достаточно одной молекулы ДНК, то есть одной бактерии или вирусной частицы.

Введение в реакцию дополнительного этапа - синтеза ДНК на молекуле РНК при помощи фермента обратной транскриптазы - позволило тестировать РНК-вирусы, например, вирус гепатита С. ПЦР - это трехступенчатый процесс, повторяющийся циклично: денатурация, отжиг праймеров, синтез ДНК (полимеризация). Синтезированное количество ДНК идентифицируют методом иммуноферментного анализа или электрофореза.

В ПЦР может быть использован различный биологический материал - сыворотка или плазма крови, соскоб из уретры, биоптат, плевральная или спинномозговая жидкость и т.д. В первую очередь ЦПР применяют для диагностики инфекционных болезней, таких как вирусные гепатиты В, С, D, цитомегаловирусная инфекция, инфекционные заболевания, передающиеся половым путем (гонорея, хламидийная, микоплазменная, уреаплазменная инфекции), туберкулез, ВИЧ-инфекция и т.д.

Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов. Прямая иммунофлюоресценция. Иммуноэлектронная микроскопия.

При большинстве вирусных инфекций развиваются иммунные реакции, применяемые для диагностики. Клеточные реакции обычно оценивают в тестах цитотоксичности лимфоцитов в отношении инфекционных агентов или заражённых ими клеток-мишеней либо определяют способность лимфоцитов отвечать на различные Аг и митогены. В работе практических лабораторий выраженность клеточных реакций определяют редко. Большее распространение нашли методы идентификации противовирусных AT.

РН основана на подавлении цитопатогенного эффекта после смешивания вируса со специфичными AT. Неизвестный вирус смешивают с известными коммерческими антисыворотками и после соответствующей инкубации вносят в монослой клеток. Отсутствие гибели клеток указывает на несоответствие инфекционного агента и известных AT.

Торможение гемагглютинации

РТГА применяют для идентификации вирусов, способных агглютинировать различные эритроциты. Для этого смешивают культуральную среду, содержащую возбудитель, с известной коммерческой антисывороткой и вносят в культуру клеток. После инкубации определяют способность культуры к гемагглютинации и при её отсутствии делают заключение о несоответствии вируса антисыворотке.

Серологические методы диагностики вирусных инфекций. Торможение гемагглютинации. Торможение цитопатического эффекта интерференцией вирусов

Торможение цитопатического эффекта интерференцией вирусов

Реакцию торможения цитопатического эффекта за счёт интерференции вирусов применяют для идентификации возбудителя, интерферирующего с известным цитопатогенным вирусом в культуре чувствительных клеток. Для этого в культуральную среду, содержащую изучаемый вирус, вносят коммерческую сыворотку (например, к вирусу краснухи при подозрении на неё), инкубируют и заражают вторую культуру; через 1-2 дня в неё вносят известный цитопатогенный вирус (например, любой ЕСНО-вирус). При наличии цитопатогенного эффекта делают вывод о том, что первая культура была заражена вирусом, соответствовавшим применённым AT.

Прямая иммунофлюоресценция

Среди прочих тестов наибольшее распространение нашла реакция прямой иммунофлюоресценции (наиболее быстрая, чувствительная и воспроизводимая). Например, идентификация ЦМВ по цитопатогенному эффекту требует не менее 2-3 нед, а при использовании меченых моноклона л ьных AT идентификация возможна уже через 24 ч. Имея набор подобных реагентов, их можно вносить в культуры, заражённые вирусом, инкубировать, отмывать несвязавшийся реагент и исследовать с помощью люминесцентной микроскопии (позволяет выявить наличие флюоресценции заражённых клеток).

Иммуноэлектронная микроскопия

Иммуноэлектронная микроскопия (аналог предыдущего метода) позволяет идентифицировать различные виды вирусов, выявленные электронной микроскопией (например, различные виды герпесвирусов), что невозможно сделать, основываясь на морфологических особенностях. Вместо антисывороток для идентификации используют помеченные разными способами AT, но сложность и дороговизна метода ограничивают его применение.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Выявление противовирусных антител ( AT ) в сыворотке крови. РТГА. РСК. РИФ. Иммуносорбционные методы выявления противовирусных антител.

Более простой и доступный подход — выявление противовирусных антител ( AT ) в сыворотке. Образцы крови необходимо отбирать дважды: немедленно после появления клинических признаков и через 2~3 нед. Чрезвычайно важно исследовать именно два образца сыворотки. Результаты однократного исследования нельзя считать окончательными из-за невозможности связать появление AT с настоящим случаем. Вполне возможно, что эти AT циркулируют после предшествующей инфекции. В подобной ситуации роль исследования сыворотки, полученной в период рекон-валесценции, трудно переоценить. На наличие заболевания в период отбора первой пробы указывает не менее чем четырёхкратное увеличение титра AT, выявленное при исследовании второй пробы.

Перечисленные ниже методы не позволяют дифференцировать антитела ( AT ), образующиеся во время болезни и циркулирующие после выздоровления (продолжительность этого периода вариабельна для различных инфекций). Поскольку для адекватной диагностики необходимо подтвердить достоверное увеличение титров AT в двух пробах, то первую пробу исследуют в острой фазе, а вторую — в период выздоровления (через 2-3 нед). Полученные результаты носят ретроспективный характер и более пригодны для проведения эпидемиологических обследований.

РТГА выявляет AT, синтезируемые против гемагглютининов вирусов (например, вируса гриппа). Метод позволяет легко выявлять подобные антитела ( AT ) в сыворотке больного.

Выявление противовирусных антител ( AT ) в сыворотке крови. РТГА. РСК. РИФ

РСК — основной метод серодиагностики вирусных инфекций (среди доступных). Реакция выявляет комплементсвязывающие IgM и IgG, но не дифференцирует их; для оптимизации получаемых результатов постановка реакции требует определённых навыков персонала.

РИФ. При возможности получить биоптат инфицированной ткани и доступности коммерческих наборов AT, меченных флюоресцеином, диагноз может подтвердить реакция прямой иммунофлюоресценции. Постановка реакции включает инкубацию исследуемой ткани с AT, их последующее удаление и люминесцентную микроскопию образца.

Иммуносорбционные методы выявления противовирусных антител

Иммуносорбционные методы (например, ИФА и РИА) более информативны, поскольку выявляют IgM и IgG по отдельности, что позволяет делать определённые выводы о динамике инфекционного процесса или состоянии реконвалесценции. Для выявления AT известный Аг сорбируют на твёрдом субстрате (например, на стенках пробирок, пластиковых микропланшетах, чашках Петри) и вносят различные разведения сыворотки пациента. После соответствующей инкубации несвязавшиеся AT удаляют, вносят антисыворотку к Ig человека, меченную ферментом, повторяют процедуру инкубирования и отмывания несвязанных AT и вносят какой-либо хромогенный субстрат (чувствительный к действию фермента). Поскольку изменение окраски пропорционально содержанию специфических AT, то вполне возможно определение их титра спектрофотометрическим способом. В диагностике ВИЧ-инфекции наи- большее распространение нашёл метод иммуноблотннга.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Диагностика бактериальных инфекций. Бактериологическое и серологическое исследование

Бактериологический метод включает бактериоскопию материала от больного, выделение чистой культуры возбудителя и его идентификацию с определением чувствительности к антибиотикам и химиопрепаратам.

Выбор материала для исследования бактериоскопическим методом зависит от предполагаемой этиологии заболевания, стадии болезни с учетом ее патогенеза, биологических свойств возбудителя и других моментов.
1. При инфекционных болезнях, протекающих с бактериемией (брюшной тиф, генерализованные и септические формы сальмонеллеза); при сепсисе любой этиологии, вызываемом не только гноеродной кокковой микрофлорой, синегнойной палочкой, но и более редкими ее возбудителями (Serratia Salinaria, неферментирующие бактерии, анаэробы, L-формы стрептококка (метод Сукнева) и другие микроорганизмы), прибегая в этих случаях к посевам на специальные питательные среды. Следует подчеркнуть, что успех частоты и спектр выделяемых возбудителей из крови и других биологических секретов больного зависят от эрудиции, пытливости, настойчивости и упорства работников бактериологической лаборатории.
2. Спинномозговая жидкость (гнойные менингиты; туберкулезный менингит при длительном выращивании (более месяца) на специальных для выделения туберкулезных бактерий питательных средах.
3. Мокрота (острые пневмонии и трахеобронхиты, туберкулез, коклюш, чума, редкие формы брюшного тифа (пневмотиф), легионеллез, респираторный микоплазмоз и хламидиозы).
4. Слизь, гной с миндалин (стрептококковые и стафилокковые ангины).

5. Налет и слизь с миндалин, из зева и носа, отделяемое с конъюнктивы, половых органов (дифтерия).
6. Соскоб со слизистой носа (проказа).
7. Отделяемое из носа и ротоглотки (синуиты, озена, риносклерома).

серологическое исследование

8. Отечная жидкость, кусочки пораженных мышц, некрозированные ткани (анаэробные инфекции); отделяемое ран (ботулизм; в случае необходимости и столбняк).
9. Пунктат из увеличенных лимфоузлов (туберкулез, токсоплазмоз).
10 Содержимое карбункула и пунктат из нагноившихся лимфоузлов (чума, туляремия, септикопиемия, сибирская язва).

Бактериологические исследования при особо опасных инфекциях (чума, туляремия, бруцеллез, холера (при которой исследуются только испражнения(!)) выполняются в специальных режимных лабораториях, исключающих возможность самозаражения ее сотрудников при работе с бактериальными культурами и распространение возбудителей за пределы этих лабораторий.

Серологические исследования. Внедрены в клинику несколько позднее бактериологического метода, предложенного Р. Кохом. В 1896 г. Ф. Видаль обнаружил, что сыворотки крови больных брюшным тифом к концу 1-й недели болезни приобретают способность агглютинировать брюшнотифозную палочку - возбудителя брюшного тифа (положительная реакция Видаля). При полимикробной этиологии инфекционных болезней после открытия Видаля стали также прибегать к определению титров сывороточных агглютининов к выделяемым из патологического материала нескольким видам бактерий (реакция аутовидаля) и контролировать их динамику в зависимости от стадии болезни. Наиболее высокие титры агглютининов к одному из видов выделенных бактерий свидетельствуют в пользу его большей этиологической причастности к развитию болезни.

Уже в начале применения реакции Видаля в клинике было замечено, что самые тяжелые формы, например, брюшного тифа могут протекать при отсутствии в крови агглютининов (отрицательная реакции Видаля), что указывает на относительную диагностическую ценность этого метода как при брюшном тифе, так и при других инфекционных болезней. Позднее он был заменен более чувствительными серологическими методами. Но приоритетное значение открытия Видаля останется навсегда.

В настоящее время для серологической диагностики бактериальных инфекций применяют более чувствительные методы, когда антиген бактерий сорбируют на поверхности эритроцитов (эритроцитарные диагностикумы1). Таким образом, были разработаны принципиально новые серологические реакции: прямой (РПГА) и непрямой гемагглютинации (РИГА). Они широко применяются для серологической диагностики многих бактериальных, вирусных и других инфекций (брюшного тифа, сальмонеллеза, шигеллезов, бруцеллеза, туляремии и др.). Сохраняет свое диагностическое значение реакция преципитации при некоторых заболеваниях (ботулизме и сибирской язве - реакция Асколи для ее диагностики у животных). В серодиагностике особенно широко в настоящее время применяется реакция связывание комплемента (РСК), предложенная в 1901 г. французскими исследователями Борде и Жангу (сифилис, гонорея, бруцеллез, токсоплазмоз, туберкулез, проказа, сап). РСК имеет наибольшее значение для серодиагностики вирусных инфекций (грипп, другие ОРВИ, герпес, энцефалит, эпидемический паротит, орнитоз и др.), а также многочисленных риккетсиозов.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.


МЕТОДЫ СЕРОЛОГИЧЕСКИХ РЕАКЦИЙ В ДИАГНОСТИКЕ ВИРУСНЫХ БОЛЕЗНЕЙ

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Для диагностики вирусных болезней людей и животных используют серологические реакции, которые основаны на взаимодействии вирусных антигенов со специфическими антителами.

Вирус – антиген, так как их белковая оболочка вызывает выработку специфических антител, которые накапливаются в сыворотке крови. Они способны соединятся в комплекс антиген + антитело только со своим антигеном. Если антиген – инфекционный агент (вирус), антитела его нейтрализуют: в этом состоит биологическая роль антитела.

Взаимодействие антител с антигенами возможно в пробирке, что является основой серологических реакций. Если взятая пара АГ (антиген) и АТ (антитело) гомологичны и соответствуют друг другу, то они образуют комплекс АГ + АТ. Это позволяет обнаружить по известному антителу неизвестный антиген [1].

1. Реакция нейтрализации (PH)

Это универсальная реакция служит эталоном при оценке других серологических реакций.

Принцип ее состоит в том, что при взаимодействии антигена (вируса) с гомологичными антителами образуется комплекс антиген + антитело, в результате нейтрализуется инфекционность вируса. Индикатором свободного (не связавшегося с антителами) вируса является чувствительная к вирусу живая система: животные, куриные эмбрионы или культура клеток.

При постановке реакции в пробирке смешивают равные объемы вируса и сыворотки, смесь выдерживают при соответствующей температуре (4, 22 или 37 °С) в течение одного часа или 16—18 ч (зависит от вируса и условий опыта). Затем этой смесью заражают чувствительную к вирусу живую систему, наблюдают за состоянием живых объектов и через соответствующий срок учитывают результат нейтрализации вируса по отсутствию:

1) гибели, развития клинической картины болезни и патологических изменений в органах и тканях лабораторных животных;

2) гибели, патологических изменений в оболочках, тканях зародыша и отсутствию гемагглютининов в жидкостях полостей куриных эмбрионах;

3) цитопатического действия (ЦПД) или бляшкообразования в культуре клеток. [2]

Так как для нейтрализации определенного количества вируса требуется определенное количество антител, а один из этих компонентов все еще неизвестен, то PH можно ставить в двух вариантах:

1) к разным дозам (разведениям) сыворотки (обычно в виде последовательных 2-кратных разведений) добавляют одинаковые дозы вируса (обычно 100—1000 ЕД50). В этом варианте определяют титр вируснейтрализующих антител в сыворотке, показателем которого служит разведение сыворотки, защищающее от действия вируса 50 % зараженных биологических систем;

2) к разным дозам (разведениям) вируса (обычно в виде последовательных 10-кратных разведений) добавляют одинаковые дозы сыворотки (обычно в разведениях 1 : 10 или 1 : 20). При постановке данного варианта PH кроме исследуемой (или специфической) сыворотки используют и нормальную (отрицательную) сыворотку. В этом случае определяют индекс нейтрализации (IN), который показывает, во сколько раз иммунная (специфическая) или исследуемая сыворотка снижает титр вируса по сравнению е нормальной сывороткой.

Достоинствами PH являются ее универсальность и высокая специфичность; недостатки — большая трудоемкость; необходимость строго соблюдать стерильность материалов, посуды и инструментов; высокая стоимость живых биологических систем; относительная длительность биопробы и необходимость проведения математических расчетов. [3]

2.Реакция торможения гемагглютинации (РТГА)

Широко используется при исследовании гемагглютинирующих вирусов.

Основана на том, что антитела при встрече с гомологичным вирусом (антигеном) нейтрализуют не только его инфекционную, но и гемагглютинирующую активность, так как блокируют рецепторы вирионов, ответственные за гемагглютинацию, образуя с ними комплекс антиген + антитело.

Принцип РТГА состоит в том, что в пробирке (лунке) смешивают равные объемы сыворотки крови и вируса и после экспозиции (30—40 мин) добавляют эритроциты соответствующего вида животного.

Эритроциты являются индикатором наличия вируса в смеси. Агглютинация эритроцитов указывает на наличие вируса в смеси, а отсутствие гемагглютинации — на его отсутствие, так как антитела полностью нейтрализовали гемагглютинирующую активность вируса. [4]

РТГА можно ставить в двух вариантах:

1) к разным разведениям сыворотки (обычно 2-кратным) добавляют одинаковые дозы вируса (4—8 ГАЕ);

2) к разным разведениям вируса (обычно 2-кратным) добавляют одинаковые дозы сыворотки.

Постановку РТГА по первому варианту проводят по следующим этапам:

• титруют вирус в РГА и определяют его гемагглютинирующий титр;

• приготовляют и контролируют рабочую дозу вируса (4 или 8 ГАЕ);

• ставят главный опыт РТГА;

Оценивают гемагглютинацию в каждой смеси в крестах и определяют титр антител. За титр антител в сыворотке принимается наивысшее разведение сыворотки, которое еще полностью тормозит гемагглютинацию. [5]

РГТА позволяет решить следующие диагностические задачи:

• обнаружить и определить титр антител в сыворотке крови с помощью известного вируса;

• идентифицировать неизвестный вирус путем исследования его с различными заведомо известными сыворотками (антителами).

Достоинства РТГА — простота техники постановки и быстрый результат. Однако эту реакцию можно использовать только для гемагглютинирующих вирусов. [4]

3.Реакция непрямой гемагглютинации (РНГА)

Основана на том, что эритроциты, на которых предварительно адсорбированы антигены, приобретают способность агглютинироваться в присутствии гомологичных сывороток (антител).

Эритроциты при этом выполняют роль носителей со специфическими детерминантами, агглютинация которых происходит в результате реакции антиген + антитело.

Эритроциты, к поверхности которых прочно присоединены антигены, называют эритроцитарным антигенным диагностикумом, или эритроцитами, сенсибилизированными антигеном.

Другой тип РНГА — на поверхности эритроцитов адсорбированы антитела и последующая их агглютинация происходит в присутствии гомологичного антигена. В этом случае такие эритроциты называют эритроцитарным антительным диагностикумом, или эритроцитами, сенсибилизированными антителами.

Приготовление эритроцитарных диагностикумов включает следующие этапы:

• фиксация эритроцитов формальдегидом или глютаровым, или акриловым альдегидами. Такие обработанные эритроциты длительно сохраняются. Чаще для этой цели используют эритроциты барана, человека, кур и др.;

• обработка фиксированных эритроцитов раствором танина. В результате эритроциты приобретают свойство необратимо адсорбировать на своей поверхности белки (вирусы и антитела);

• сенсибилизация танизированных эритроцитов вирусами или антителами.

Методика постановки РНГА для обнаружения и определения титра антител заключается в следующем:

• к последовательным 2-кратным разведениям сыворотки добавляют равные дозы эритроцитов, сенсибилизированных антигеном;

• смесь оставляют на 2—3 ч при комнатной температуре или на 16—18 ч при 4 °С;

• учитывают результаты. Если в сыворотке содержатся антитела к вирусу, которым были сенсибилизированы эритроциты, наблюдают гемагглютинацию, которую оценивают в крестах.

РНГА позволяет решать следующие диагностические задачи:

• обнаружить антитела и определить их титр в сыворотке крови с помощью известного эритроцитарного антигенного диагностикума;

• обнаружить и идентифицировать неизвестный вирус с помощью известного эритроцитарного антительного диагностикума.

Достоинства РНГА: высокая чувствительность, простота техники постановки и быстрота ответа. Однако важно отметить, что возникают большие трудности в приготовлении стабильных эритроцитарных диагностикумов (большая зависимость от чистоты используемых компонентов, необходимость подбора режима фиксации, танизации и сенсибилизации эритроцитов для каждого вида вируса). [6]

4.Реакция связывания комплемента (РСК)

Это — одна из традиционных серологических реакций, применяемых для диагностики многих вирусных болезней.

Само название в значительной мере отражает суть метода, состоящего из двух отдельных этапов. На первом этапе участвуют антиген и антитело (один из этих ингредиентов заранее известен), а также определенное количество предварительно оттитрованного комплемента. При соответствии антигена и антитела их комплекс связывает комплемент, что выявляют на втором этапе с помощью индикаторной системы (смесь бараньих эритроцитов и антисыворотки к ним — гемолизина). Если комплемент связался при взаимодействии антигена и антитела, то лизиса эритроцитов не происходит (положительная РСК). При отрицательной РСК несвязанный комплемент способствует гемолизу эритроцитов. РСК часто используют в диагностической практике для обнаружения и идентификации вирусов, обнаружения и титрования антител в сыворотках крови.

Основными компонентами РСК служат антигены (известные или выявляемые), антитела (известные антисыворотки или исследуемые сыворотки), комплемент (сыворотка крови морской свинки), гемолитическая сыворотка и эритроциты барана; в качестве разбавителя используют изотонический раствор натрия хлорида (pH 7,2—7,4) или различные буферные растворы. [2]

5.Реакция диффузионной преципитации в геле (РДП)

Основана на способности к диффузии в гелях антител и растворимых антигенов.

Для создания условий диффузии в слое агара делают лунки, в которые заливают компоненты. Количество и взаимное расположение лунок зависит от решаемой задачи.

РДП позволяет решить следующие диагностические задачи:

обнаружить и идентифицировать неизвестный выделенный вирус путем исследования его с различными заведомо известными сыворотками (антителами);

обнаружить и определить титр антител в сыворотках с помощью известного антигена.

РДП может быть поставлена в чашках Петри (макрометод) и на предметных стеклах (микрометод).

Методика постановки макрометода по технике принципиально не отличается от постановки микрометода, только в этом случае в чашку Петри наливают 20—25 мл расплавленного агара и в застывшем геле делают лунки диаметром 5—6 мм по специальной схеме (расстояние между лунками 4—5 мм ) и вносят соответствующие компоненты.

При постановке РДП на предметных стеклах препарат можно через 48—72 ч высушить и окрасить раствором амидного черного, что позволит его сохранить и сфотографировать.

Достоинства РДП: простота техники постановки; быстрота получения ответа; не требует стерильной работы, особой чистоты компонентов; возможность документирования результата путем фотографирования. Недостаток РДП — низкая чувствительность. [7]

6.Реакция торможения гемадсорбции (РТГАд)

Эту реакцию используют в том случае, если вирус обладает гемадсорбирующими свойствами. Гемадсорбцией называется адсорбция (прилипание) эритроцитов к поверхности клеток, зараженных вирусом.

Чтобы наблюдать гемадсорбцию, из пробирки с зараженной вирусом культурой клеток удаляют культуральную жидкость и вносят 0,5%-ную взвесь эритроцитов, оставляют на 5—10 мин, затем слой клеток споласкивают физиологическим раствором (чтобы смыть эритроциты). Если в зараженной культуре клеток идет репродукция вируса, то на таких клетках под малым увеличением микроскопа можно видеть адсорбировавшие эритроциты, в контрольных (незараженных) культурах клеток таковые отсутствуют.

РТГАд основана на торможении гемадсорбции, если зараженную вирусом культуру клеток предварительно обработать специфической сывороткой (содержащей антитела к этому вирусу).

Методика постановки РТГАд заключается в следующем: на 3—7-й день после заражения культур клеток из них удаляют питательную среду, промывают клетки раствором Хенкса и вносят в каждые 4 пробирки по 0,5 мл специфической к вирусу ПГ-3 сыворотки в разведении 1:10;

пробирки в наклонном положении оставляют при комнатной температуре на 30 мин (для контакта клеток с антителами);

во все пробирки вносят по 1 мл 0,5%-ной взвеси эритроцитов морской свинки;

через 30 мин — учет результатов. Отсутствие гемадсорбции в пробирках со специфической сывороткой и проявление ее в пробирках с зараженной культурой клеток, но не обработанной специфической сывороткой, свидетельствует о наличии вируса ПГ-3 в культуре клеток.

Чаще всего РТГАд применяют для идентификации вируса и редко для обнаружения и титрования антител. [4]

7.Реакция иммунофлуоресценции (РИФ)

При данном методе используют явление люминесценции.

В РИФ люминесценция проявляется в виде флуоресценции — это свечение, возникающее в момент облучения возбуждающим светом и прекращающееся сразу после его окончания.

Для возбуждения флуоресценции при люминесцентной микроскопии чаще всего используют ультрафиолетовую или сине-фиолетовую часть спектра (длина волны 300—460 нм).

Метод РИФ заключается в том, что антитела, соединенные с флуорохромом, сохраняют способность вступать в специфическую связь с гомологичным антигеном. Образующийся комплекс антиген + антитело в связи с присутствием в нем флуорохрома обнаруживают под люминесцентным микроскопом по характерному свечению.

Для получения антител используют высокоактивные гипериммунные сыворотки, из которых выделяют антитела и метят их флуорохромом. В качестве флуорохрома наиболее часто используют ФИТЦ-флуоресцеин изотиоционат (зеленое свечение) и РСХ-родамин сульфохлорид (красное свечение). Антитела, меченные флуорохромом, называют конъюгатом. [3]

Методика приготовления и окрашивания препаратов заключается в следующем:

• готовят на предметных стеклах мазки, отпечатки из органов или на покровных стеклах — инфицированную культуру клеток; можно использовать и гистосрезы;

• препараты подсушивают на воздухе и фиксируют в охлажденном ацетоне при комнатной температуре или при минус 15 °С (от 15 мин до 4—16 ч);

• окрашивают по прямому или непрямому методу; ведут учет под люминесцентным микроскопом по интенсивности свечения, оцениваемому в крестах.

Параллельно готовят и окрашивают препараты от здорового животного — контроль.

Различают два основных метода применения флуоресцирующих антител: прямой и непрямой.

Прямой метод (одноступенчатый). На фиксированный препарат наносят конъюгат (флуоресцирующую сыворотку к предполагаемому вирусу), выдерживают 30 мин при температуре 37 °С во влажной камере. Затем препарат отмывают от несвязанного конъюгата физиологическим раствором (pH 7,2 — 7,5), подсушивают на воздухе, наносят нефлуоресцирующее масло и исследуют под микроскопом.

Прямой метод позволяет обнаружить и идентифицировать антиген. Для этого нужно иметь на каждый вирус флуоресцирующую сыворотку.

Непрямой метод (двухступенчатый). На фиксированный препарат наносят немеченую сыворотку, содержащую антитела к предполагаемому вирусу, выдерживают 30 мин при 37 °С, отмывают несвязанные антитела. На препарат наносят флуоресцирующую антивидовую сыворотку, соответствующую виду животного — продуцента гомологичных противовирусных антител, выдерживают 30 мин при 37 °С. Затем препарат отмывают от несвязанных меченых антител, подсушивают на воздухе, наносят нефлуоресцирующее масло и исследуют под люминесцентным микроскопом.

Непрямой метод позволяет не только обнаружить и идентифицировать антиген, но и выявить и определить титр антител. Кроме того, этим методом можно обнаруживать одной меченой сывороткой антигены различных вирусов.

Разработаны несколько модификаций непрямого метода. Наибольшего внимания заслуживает метод с использованием комплемента. Метод заключается в том, что на фиксированный препарат наносят инактивированную нефлуоресцирующую специфическую сыворотку и комплемент морской свинки, выдерживают 30 мин при 37 °С, промывают, и для выявления комплекса антиген + антитело + комплемент наносят флуоресцирующую антикомплементарную сыворотку, выдерживают 30 мин при 37 °С, промывают, подсушивают на воздухе и исследуют под люминесцентным микроскопом.

Достоинства РИФ: высокая специфичность и чувствительность; простота техники постановки; требуется минимальное количество компонентов. Это экспресс-метод диагностики, так как в течение нескольких часов можно получить ответ. К недостаткам можно отнести субъективизм в оценке интенсивности свечения и, к сожалению, иногда флуоресцирующие сыворотки бывают плохого качества. В настоящее время РИФ широко применяют в диагностике вирусных болезней животных. [5]

Библиографический список

1. Госманов, Р. Г. Ветеринарная вирусология [Текст] : учебник для студ. вузов, обуч. по спец. 111201 "Ветеринария" / Р. Г. Госманов, Н. М. Колычев. - 2-е изд., перераб. и доп. - М. : КолосС, 2006. – 93c.

2. Широбоков В. П. Медицинская микробиология, вирусология и иммунология [Текст] : учебник для студ. высш. мед. учеб. заведений. – М. : Винница Нова Книга, 2015. – 262 с.

4. В. А. Подколзина, А. А. Седов Медицинская микробиология[Текст]: конспект лекций для вузов. – М.: Приор-издат, 2007. – 14с.

5. Павлович С. А. Микробиология с вирусологией и иммунологией [Текст] : учеб. пособие / Павлович С. А. – 3-е изд., испр. – Минск: Выш. шк., 2013. – 388 с.

6. Донецкая Э.Г.-А. Клиническая микробиология [Текст] : Руководство для специалистов клинической лабораторной диагностики. — М. : ГЭОТАРМедиа, 2011. — 57 с.

7. Кишкун А. А. Клиническая лабораторная диагностика [Текст]: учеб. пособие. – М.: ГЭОТАР-Медиа, 2010. – 807 с.

Читайте также: