Способы инактивации вирусов в

Обновлено: 24.04.2024

Физические методы инактивации вирусов. Гамма-лучи в инактивации вирусов.

Наиболее распространенными физическими методами инактивации вирусов являются гамма- и ультрафиолетовые (УФ) лучи.
Гамма-лучи — вид ионизирующего излучения, обладающий большой проникающей способностью. В основе действия их лежат два эффекта: прямое и непрямое воздействие. Первое заключается в непосредственном поглощении энергии излучения биологическими молекулами. Наиболее уязвимыми мишенями являются пуриновые и пиримидиновые основания. Непрямое действие — влияние на объект активных свободных радикалов Н, ОН, Н02 и молекулярных продуктов, например, перекиси водорода, образующихся в среде вследствие радиолиза воды. Перенос энергии радикалов в растворе осуществляется путем диффузии. Действие радикалов может вызвать такие изменения в ДНК, как дезаминирование оснований, дегидроксилирование, разрыв связей между дезоксирибозой и основанием, разрывы нуклеотидных цепей, окисление дезоксирибозы.

В результате реакций, происходящих под влиянием прямого и непрямого действия излучения, возможны различные повреждения структуры нуклеиновых кислот вирусов: разрыв водородных связей, появление сшивок, двухцепочечных разрывов. Белковая оболочка под воздействием радиации повреждается незначительно.

Инактивирующее действие гамма-лучей изучали на различных вирусах: осповакцины, болезни Ауески, простого герпеса, ящура, гриппа, венесуэльского энцефаломиелита лошадей, бешенства, классической чумы свиней и др.

Установлено, что при воздействии гамма-лучей инфекционность вирусов теряется быстрее, чем антигенность. Так, при облучении вируса гриппа в дозе 30 кГр наблюдали полное разрушение инфекционности при сохранении гемагглютинирующей и нейраминидазной активности. Инфекционность вируса кори утрачивалась при дозе облучения 5 кГр, в то время как гемагглютинирующая активность — при 20 кГр. Гемагглютинирующая активность вирусов японского энцефалита, венесуэльского энцефаломиелита лошадей сохранялась в препаратах, в которых не обнаруживали инфекционный вирус при облучении в дозе 50—60 кГр. Аналогичную устойчивость к облучению обнаружил основной группоспецифический белок VP7 вируса катаральной лихорадки овец.
Инактивирующий эффект гамма-лучей зависит от влажности препарата, температуры, наличия защитных средств.

схема ПЦР

Установлено, что в водных растворах вирус инактивируется значительно быстрее, чем в сухих препаратах. Более высокая скорость инактивации вирусов в водных растворах по сравнению с сухими препаратами объясняется суммарным действием прямого и непрямого эффекта. При облучении вируса в сухих препаратах, ввиду отсутствия несвязанной воды, непрямое действие практически исключается. С повышением температуры при облучении возрастает радиочувствительность вируса, которую можно ослабить введением в среду различных веществ (гистидина, цистеина, альбумина, сыворотки, желатина и др.) Для инактивации вирусов Коксаки, гриппа и полиомиелита в среде Игла с 2% сыворотки требовалось увеличить дозу более чем в три раза по сравнению с облучением в воде.

Экспериментально доказана возможность применения гамма-лучей для приготовления антигенов и инактивированных вакцин против бешенства, гриппа, оспы, венесуэльского энцефаломиелита лошадей, гепатита В и других инфекций. Применение гамма-излучения позволяет одновременно инактивировать и стерелизовать готовый препарат.

Эффективность УФ-лучей определяется их проницаемостью и адсорбцией биологическими молекулами. Белки поглощают УФ-лучи в меньшей степени, чем нуклеиновые кислоты, и поэтому более устойчивы к их действию.

Ультрафиолетовое облучение вызывает изменения структуры нуклеиновых кислот, заключающиеся в образовании димеров между соседними пиримидиновыми основаниями, а также ковалентных связей между нуклеиновой кислотой и белковой оболочкой. Повреждения ДНК приводят к инактивации вируса герпеса.

Вызывая глубокие изменения в структуре нуклеиновых кислот вирусов, УФ-лучи не оказывают существенного влияния на белковую оболочку, вследствие этого инактивированные вирусы способны сохранять свою антигенную и иммуногенную активность.

Однако такие особенности УФ-излучения как трудность выбора и контроля оптимальной дозы, обеспечивающей инактивацию вируса с сохранением антигенных свойств, а также эффекты экранирования и фотореактивации затрудняют практическое получение безопасных инактивированных препаратов.

Основной причиной, вызывающей инактивацию вируса при нагревании, является нарушение структурной целостности его генома, вызванное разрывом и образованием внутримолекулярных связей в нуклеиновой кислоте.

Инактивированная нагреванием вакцина против вирусной геморрагической болезни кроликов оказалась достаточно иммуногенной. Она вызывала устойчивость к экспериментальному заражению на 5-90-й день после однократного введения.

В процессе получения вакцины против гепатита В из плазмы крови вирусоносителей инактивацию вируса проводили в два этапа: полуфабрикат прогревали при 103°С в течение 90 секунд, а затем инактивированный сорбированный нафосфате алюминия антиген прогревали при 65°С в течение 10 ч. При таком способе происходила инактивация вируса гепатита и сопутствующих вирусов, которые могли присутствовать в донорской крови.

К простым и доступным методам инактивации вирусов относится фотодинамическое воздействие некоторых красителей, таких как метиленовая синька, акридиновый оранжевый, толуидин синий, нейтральный красный и другие, к которым чувствительны многие вирусы. Наиболее вероятный механизм такой инактивации — изменение или отщепление гуанина без разрыва полинуклеотидной цепи геномов. Фотодинамическую инактивацию применяли при изготовлении экспериментальных образцов инактивированных препаратов против клещевого энцефалита, краснухи, болезни Ауески, классической чумы свиней и других вирусов. Обработка вируса Сендай родамином-В, бриллиантовым зеленым и фиолетовым Гофмана сопровождалась частичной модификацией РНК без изменения капсидных белков. Инактивированный препарат обладал высокой иммуногенностью.

Основные показатели качества инактивированных препаратов, предназначенных для профилактической вакцинации, — безопасность и высокая иммуногенность.
При оценке качества ряда инактивированных препаратов первостепенное значение приобретает контроль авирулентности, направленный на выявление оставшихся жизнеспособных вирионов. Считается, что чем опаснее возбудитель, тем надежнее должны быть условия инактивации и методы контроля ее эффективности. Степень безопасности инактивированных вакцин находится в неразрывной связи с чувствительностью тест-системы, по которой оценивают полноту инактивации вируса. В связи с этим разработка наиболее чувствительных и совершенных методов обнаружения минимальных количеств живого вируса в инактивированных препаратах имеет большое значение. Следует иметь в виду, что, несмотря на стремление достичь полной инактивации вирусных частиц, всегда остается статистическая вероятность того, что какая-то часть из них может выдержать соответствующую обработку. Риск существования очень небольших количеств остаточного инфекционного вируса повышается по мере увеличения масштабов применения вакцины.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Методы инактивации вирусов. Химические методы инактивации вирусов.

Требования по безопасности ужесточаются в связи с необходимостью во многих случаях приготовления концентратов вирусных антигенов. Следует отметить, что инактивация должна быть не только эффективной, но и максимально щадящей (селективной). Иными словами, сопутствующие изменения в структуре вирусных частиц и их компонентов должны быть минимальными. Однако механизм инактивирующих воздействий во многих отношениях недостаточно выяснен и их использование зачастую носит эмпирический характер.

Так как вирионы в центре агрегатов, образованных клеточными и сывороточными компонентами, могут быть защищены от инактивации, разрушение и удаление агрегатов различными методами очистки вирусной суспензии является важным этапом перед инактивацией. При изготовлении цельновирионных не-реплицирующихся вакцин используют химические и физические методы инактивации вирусов.

Химические методы инактивации вирусов

Из химических соединений наиболее часто используют два главных типа инактиваторов: ретикулирующие (разрыхляющие) агенты и алкилирующие агенты.
К ретикулирующим агентам относятся альдегиды, в том числе формальдегид, глютаральдегид и глицидальдегид, из которых наиболее часто используют формальдегид. К алкирующим агентам относятся бетапропиолактон, этиленимин и другие азиридины.

инактивация вирусов

Механизм действия инактивирующих агентов, вероятно, заключается в следующем: 1) взаимодействуя с нуклеиновыми кислотами, они делают невозможной их репликацию; 2) вызывают ретикуляцию белков.

Механизм действия инактивирующих агентов лучше изучен применительно к белкам, чем к нуклеиновым кислотам, хотя в целом остается не полностью выясненным. Инактивация вирусов, кажется, основывается на двойном действии ретикуляции белков, взаимодействующих с клеточными рецепторами, и блокаде репликации нуклеиновых кислот. Необходимая концентрация инактивирующих агентов зависит, главным образом, от относительной концентрации белков и нуклеиновых кислот в инактивируемой среде. Температура и гомогенность инактивируемого субстрата также играют ключевую роль в кинетике инактивации вируса.

Возможность обратимости изменений реактивных групп (аминогруппа лизина, фенольные ядра тирозина) необходимо учитывать, особенно в случае использования формальдегида.
Полнота инактивации вируса должна определяться сразу после изготовления вакцины.

Наиболее общепринятыми инактивирующими агентами являются формальдегид, бета-пропиолактон и этиленимин. Одним из преимуществ бета-пропиолактона, используемого для изготовления вакцины против бешенства, и этиленимина, применяемого в изготовлении вакцины против ящура, является то, что они полностью гидролизуются в течение нескольких часов с образованием нетоксичных продуктов.

Формальдегид инактивирует вирусы благодаря высокой реакционной способности в отношении белков и нуклеиновых кислот. Он вступает в соединение не только с вирусными частицами, но и с многочисленными компонентами среды, в которую его добавляют.

Механизм инактивации вирусов формальдегидом сложен и характеризуется двумя типами реакций. Взаимодействие формальдегида с нуклеиновой кислотой и белками вируса протекает, соответственно, по типу реакции первого и второго порядка. Наиболее существенна для инактивации первая, которая, однако, в значительной мере зависит от второй.

Взаимодействуя с нуклеиновыми кислотами и белками, формальдегид реагирует в основном с аминогруппами. Присоединение формальдегида к аминогруппам пуринов и пиримидинов уничтожает матричную и информационную активность нуклеиновых кислот.

Формальдегид с большей скоростью взаимодействует с аминогруппами аминокислот и белков с образованием метилольных производных, чем с азотистыми основаниями нуклеиновых кислот. Сложилось представление, что с белками и нуклеиновыми кислотами вирусов формальдегид реагирует в две стадии. Вначале, в результате взаимодействия формальдегида с амино- или иминогруппами, быстро образуются весьма нестабильные метилольные производные, а затем, в результате вторичных реакций — бисметиленовые производные.

Продукты взаимодействия формальдегида с аминокислотами способны вступать в реакцию с нуклеиновыми кислотами значительно быстрее, чем сам формальдегид.

Во второй стадии происходит медленное взаимодействие первичных продуктов реакции с другими группами белков, в результате чего образуются ковалентно связанные димеры полипептидов. При этом уплотняется белковая оболочка и уменьшается ее проницаемость. Вследствие этого снижается скорость инактивации вируса. Под влиянием формальдегида в вирионах клещевого энцефалита образовывались гликопротеиновые димеры и комплекс РНК с белками нуклеокапсида. Последний отличался высокой стабильностью и разрушался только РНКазой. Предполагается, что образование этого комплекса — основной механизм инактивации вируса. Гликопротеин, экстрагированный из инактивированного вируса, обладал нормальной антигенной и иммуногенной активностью.

Следует отметить, что реакция формальдегида с аминогруппами обратима, то есть при удалении избытка реагента или разбавлении раствора активность нуклеиновой кислоты может быть восстановлена. Процесс взаимодействия вируса с формальдегидом зависит от таких факторов, как концентрация реагента, температура, рН среды.

При оптимальных условиях инактивации взаимодействие формальдегида с белками многих вирусов не оказывает значительного влияния на их антигенные свойства. Однако ряд вирусов теряет значительную часть антигенной активности при инактивации формалином. Это особенно касается оболочечных вирусов и, прежде всего, вирусов кори и респираторно-синцитиального (PC) вируса. Например, инактивирован-ная формалином вакцина против PC-вируса вызывала образование антител к белку F, которые не подавляли его инфекционную и симпластообразующую активность. Более того, вакцинация приводила к осложнению течения болезни при последующем ее возникновении. Вероятно, под действием формалина изменяются эпитопы гликопротеина, ответственные за индукцию вируснейтрализующих антител.

Это касается, прежде всего, поверхностного F белка, ответственного за протективный иммунитет. Однако многие из вирусов, которые относительно хорошо переносят инактивацию формалином, оказываются весьма чувствительными к изменениям ее условий. Повышение концентрации формальдегида в десять и более раз по сравнению с оптимальной (0,1%-ной) приводило к морфологическим изменениям поверхностного антигена вируса гепатита В и снижению его активности, а увеличение продолжительности обработки очищенного полиовируса сопровождалось значительным повреждением капсида некоторых вирионов. С целью смягчения повреждающего действия формальдегида на антигенность и иммуногенность вирусов стали применять стабилизирующие вещества. Установлено, например, что добавление арилдона (5,4 М) не влияет на инактивацию аттенуированных и вирулентных штаммов полиовируса формалином (1:4000, 37°С) и, в то же время, способствует сохранению иммуногенности за счет стабилизации D-антигена.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Проблемы инактивации вирусов. Пути разрешения проблем при физической инактивации вирусов.

Следует отметить, что наряду с очевидными достижениями в области инактивированных вирусных вакцин иммуногенность ряда препаратов отвечает лишь минимальным требованиям, а при некоторых заболеваниях (корь, респираторно-синцитиальная инфекция) вообще не удалось получить сколько-нибудь выраженного протективного эффекта за счет применения этого класса препаратов. Объясняется это тем, что во многих случаях трудно достичь сочетания гарантированной безопасности и высокой эффективности.

Это относится, прежде всего, к вакцинам против особо опасных возбудителей, при изготовлении которых приоритет отдается безопасности, даже если это идет в ущерб эффективности. Например, вирус гепатита А в культуральной среде в присутствии формалина (1:4000) не выявляли через 97 ч инкубации при 35°С. Однако для полной гарантии инактивации вируса его инкубировали при указанных условиях в течение 10 дней. При изготовлении вакцин против других особо опасных заболеваний продолжительность инактивации вируса обычно превышает минимальную в 2 и более раз, что, естественно, сказывается на снижении их иммуногенности.

Возникающие трудности удается в значительной мере преодолеть, если для изготовления инактивированной вакцины используют аттенуированные штаммы вируса. Это обстоятельство позволяет несколько ослабить режим инактивации вируса без существенного риска уменьшения безопасности препарата. Классическим примером такого решения может служить изготовление многочисленных инактивированных вакцин против бешенства из аттенуированных штаммов вируса. Даже полностью авирулентный для мышей штамм (TAG-1) вируса бешенства оказался в равной мере пригодным для изготовления живой и инактивированной вакцин. Показана возможность приготовления инактивированной вакцины из аттенуированных штаммов полиовируса, сравнимой по иммуногенности с вакциной из вирулентных штаммов. В нашей лаборатории получены иммуногенные инактивированные препараты из аттенуированных вакцинных штаммов вирусов болезни Ауески, катаральной лихорадки овец и других сложноустроенных вирусов.

Анализ приведенных данных показывает, что, несмотря на то, что основные принципы контроля инактивированных вакцин на авирулентность одинаковы, методы испытания конкретных вакцин могут существенно отличаться. Индивидуальный подход определяется свойствами вируса, особенностями болезни, чувствительностью биологических моделей. Наиболее универсальным и общепризнанным методом является испытание инактивированных препаратов в чувствительных культурах клеток. Однако при оценке безопасности некоторых вакцин пользуются сложным комплексным подходом.

инактивация вирусов

Анализируя сказанное, можно заключить, что одной из проблем получения инактивированных вакцин является изыскание безупречного способа инактивации вирусов, обеспечивающего необратимое повреждение его репликативного механизма при полном сохранении исходной антигенной структуры. Поскольку решить эту задачу во многих случаях пока не удалось, иммуногенность инактивированных вакцин повышают за счет использования концентрированных вирусных суспензий и адъювантов. Для приготовления инактивированных вакцин против различных заболеваний применяют химические методы инактивации вирусов. Внимание исследователей к формальдегиду по-прежнему не ослабевает; несмотря на недостаточную иммуногенность формолвакцин против некоторых инфекций, существует необходимость изыскивать новые методы инактивации, позволяющие полностью подавлять инфекционность вирусов без существенного изменения антигенных свойств вакцин. Перспективным является использование азиридинов, глютаральдегида и бета-пропиолактона, а также применение нетрадиционных способов инактивации вирусов.

Физические методы инактивации из-за трудности контролируемого дозирования особенно при крупномасштабном производстве пока не получили практического применения. С помощью химических методов можно приготовить вакцины почти из любого вируса, однако они могут сильно различаться по иммуногенности. Причина такого разнообразия пока недостаточно ясна. В одних случаях это может быть следствием повреждающего и денатурирующего действия инактивирующих агентов на вирусные антигены, в других - слабой антигенности вируса, когда даже естественное переболевание не сопровождается образованием выраженного иммунитета.

В повышении иммуногенности инактивированных вакцин важная роль принадлежит адъювантам. Несмотря на крупные успехи в создании инактивированных вакцин, многие из них пока не обеспечивают такой напряженной и длительной защиты, как живые. Несмотря на это, против некоторых болезней созданы достаточно эффективные инактивированные вирусные вакцины, являющиеся на сегодня единственно приемлемыми препаратами для специфической профилактики.

Иммуногенность инактивированной вакцины в значительной степени зависит от наличия и вида адъюванта. Включение ГОА в состав вакцин увеличило их активность во много раз. В вакцинах для человека в качестве адъюванта используют только ГОА. В вакцинах для животных используют различные адъюванты. Для крупного и мелкого рогатого скота в качестве адъюванта чаще применяют ГОА с сапонином. Для свиней чаще применяют эмульгированные вакцины. Эмульгированные моно- и поливалентные вакцины оказались более иммуногенными не только для свиней, но и для крупного рогатого скота.

Вакцины с масляным адъювантом создавали у телят более выраженный и продолжительный иммунитет, чем ГОА-вакцина. У 1-месячных телят с колостральным иммунитетом отсутствовал иммунный ответ на введение водных антигенов, тогда как аналогичные телята, привитые вакциной с масляным адъювантом, реагировали иммунологически так, как взрослые животные.
Иммуногенность инактивированных вакцин для птиц подобным образом зависит от вида адъюванта.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Повышение вирусной безопасности биотерапевтической продукции

Пожалуйста, расскажите о вашей задаче. Узнать больше Позвонить специалисту Запросить информацию Запросить цены


Что такое инактивация вирусов?

Разрушение и денатурация вирусов

Инактивация вирусов — первый из двух стандартных этапов повышения безопасности биотерапевтической продукции. Во время инактивации все вирусы в частично очищенной терапевтической суспензии либо намеренно уничтожаются, либо лишаются своих патогенных свойств в течение короткого времени. Для необратимого разрушения и денатурации вируса обычно необходимо изменить окружающую его среду.

Обычно для необратимого разрушения и денатурации структуры вируса в окружающую его среду вносятся изменения — с помощью химических, физических или даже энергетических методов. Удаление вирусов — отдельный процесс, дополняющий инактивацию. Вывод или отделение вируса от белка (белков) или производимого продукта способствует дальнейшему повышению вирусной безопасности.

Почему необходима инактивация вирусов?

Многие биотерапевтические продукты содержат вирусы или подвергаются вирусному загрязнению в ходе производства или обработки. Для нейтрализации патогенности, устранения вирусной нагрузки (количества вируса) и исключения вреда для пациента эти препараты подвергают специальной очистке, включающей два этапа — инактивацию и удаление вирусов. Обычно применение этих процессов по отдельности недостаточно эффективно. Существуют различные методы инактивации и удаления, учитывающие специфические характеристики вируса и вид биотерапевтического продукта. Для расширения спектра уничтожаемых вирусов во многих процессах биотерапевтической обработки применяется сочетание взаимодополняющих методов.

Методы инактивации вирусов

Учет размера, вида и лабильности биотерапевтического средства

Инактивация
Существует несколько методов вирусной инактивации. Наиболее распространенные из них:

  • методы с применением низкого уровня pH — особенно часто применяются к таким биотерапевтическим продуктам, как моноклональные антитела (mAbs)
  • методы с применением растворителя или ПАВ — обычно используются для полисахаридов

Реже используются такие методы инактивации вирусов, как пастеризация, обработка сухим теплом и применение парообразного теплоносителя (например, для продуктов на основе крови или сыворотки).

Удаление вирусов
Осаждение, хроматография и нанофильтрация широко освещены в литературе.

Выбор метода инактивации и удаления вирусов зависит от размера, вида и лабильности биотерапевтического продукта, метода (методов) очистки при производстве, происхождения и титра вирусов. Наряду с вирусной безопасностью важными показателями качества, которые необходимо контролировать в ходе всего процесса, являются структура и действие лекарственного вещества. Эффективность любого метода инактивации (с применением низкого уровня pH или ПАВ) обеспечивается точным контролем одновременно нескольких критических параметров процесса. Такой контроль необходим для всестороннего понимания процесса и его воздействия на лекарственное вещество. Современные рабочие станции химического синтеза поддерживают картирование процессов, стабильную работу в рамках заданных параметров, а также моделирование для переноса и масштабирования метода.

Метод вирусной инактивации с применением низкого уровня pH

Метод вирусной инактивации с применением низкого уровня pH

На процесс инактивации вирусов с применением низкого уровня pH влияют такие характеристики, как pH, длительность, температура, содержание белка и растворителя или буфера. Необратимая денатурация и эффективное уничтожение многих вирусов возможны при уровне pH 5,0–5,5. В зависимости от объема вирусов, которые подвергаются инактивации и очистке, этого диапазона может оказаться достаточно. Однако для эффективной инактивации ряда вирусов в оболочке необходим уровень pH в диапазоне 3,5–4.

Для инактивации вирусов в иммуноглобулиновых продуктах типа mAb чаще всего применяется метод с низким уровнем pH, так как он достаточно прост, компактен и, в отличие от ПАВ или растворителей, практически не требует участия оператора и дополнительных шагов по удалению. Однако подходящие и оптимальные условия инактивации зависят от самой молекулы и требуемого спектра удаления вирусов. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации необходимы исследования молекул. Эти границы и результат процесса инактивации вирусов обычно определяются полным или частичным набором переменных — критическими параметрами процесса. Они влияют на исход вирусной инактивации и, следовательно, на качество лекарственного вещества. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Обычно для исследований по вирусной инактивации с применением низкого уровня pH используется раствор иммуноглобулина заданного объема и концентрации, который помещается в емкость — например, лабораторный стакан с магнитной мешалкой. Чаще всего в качестве материала исследования выступают иммуноглобулины, у которых начальный pH близок к физиологическим условиям. Задача исследователей — определить параметры добавления реагентов. Для этого проводится ручное титрование с бюреткой или пипеткой с периодической регистрацией значений pH. После выдерживания в условиях низкого уровня pH с соблюдением других параметров в течение времени, рекомендованного для инактивации целевых вирусов, лекарственное вещество или раствор иммуноглобулина подвергают обратному титрованию. Уровень pH при этом изменяется от низкого до физиологического или слабо-щелочного. Это конечный этап вирусной инактивации с помощью выдерживания при низком уровне pH. Однако в ходе такого исследования с применением титрования при низком уровне pH для анализа в лаборатории и регистрации различных качественных характеристик (например, оценки агрегации или дезамидирования методом эксклюзионной хроматографии по размеру) требуется отбор проб. Хотя опытные ученые выполняют все процедуры с нужной точностью, инактивация вирусов — кропотливый ручной процесс, сопряженный с естественными изменениями и отклонениями, которые затрудняют получение воспроизводимых результатов.

Метод вирусной инактивации с применением низкого уровня pH

Хотя главной целью изучения вирусной инактивации при низком уровне pH на последующих этапах биотехнологического процесса является определение объема добавляемых реагентов и длительности выдерживания, не менее важно определение кинетики процесса и влияния его комбинированных параметров. В конечном итоге эти характеристики необходимы для разработки надежного и оптимального процесса инактивации. Тем не менее в ходе такой разработки ученые часто не отслеживают температуру — она остается неконтролируемым параметром.

Причиной может быть использование для вирусной инактивации выдерживанием экспериментальных или даже коммерческих систем промышленного типа либо передаточных емкостей, которые регистрируют температуру, но не регулируют ее. Еще один параметр, который часто не учитывается исследователями инактивации при низком уровне pH, которые проводят опыты на ручных платформах с магнитными мешалками, — репрезентативность масштаба, в частности репрезентативность перемешивания. Без сбора данных о такой простой процедуре невозможно подтвердить правильность и стабильность заданных условий исследования.

Характеристика процесса инактивации вирусов при низком уровне pH

Характеристика процесса инактивации вирусов при низком уровне pH

Вирусная инактивация с применением низкого уровня pH на последующих этапах обработки создает риск агрегации в продукте с моноклональными антителами. В презентации Хирен Д. Ардешна (Hiren D. Ardeshna) из компании GlaxoSmithKline представлена многофакторная экспериментальная схема, которая позволяет исследовать влияние четырех параметров процесса:

  • конечная точка низкого уровня pH
  • время выдерживания при низком уровне pH
  • длительность титрования с низким уровнем pH
  • длительность титрования с нейтрализацией

Инактивация вирусов при обработке на последующих этапах

Обработка растворителем/ПАВ для инактивации вирусов

Методы с растворителем или ПАВ чаще всего используются для инактивации вирусов в оболочке. Применяемые реагенты оказывают незначительное влияние на лабильность терапевтических белков или антител, тогда как некоторые методы с применением низкого pH могут вызывать денатурацию или дезамидирование. Многие требования к вирусной инактивации с растворителем или ПАВ аналогичны требованиям к методам с низким уровнем pH — в первую очередь необходимо определить объем добавляемого реагента (в данном случае растворителя или ПАВ) и длительность процесса. Как и в случае с инактивацией при низком pH, конкретные условия зависят от вида иммуноглобулина или лекарственного вещества. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации с растворителем или ПАВ необходимы исследования молекул. Эти границы и результат процесса инактивации аналогично определяются критическими параметрами процесса. К ним относятся температура, содержание белка, содержание растворителя или ПАВ, время выдерживания в условиях инактивации, а также перемешивание и эффективность гомогенизации растворителя или ПАВ. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Хотя в исследованиях вирусной инактивации с применением ПАВ не требуется такого же титрования реагента, как в методах с низким уровнем pH, оценка проектного поля с критически важными переменными остается обязательным условием. Как и в случае с низким pH, определение характеристик инактивации вирусов растворителем или ПАВ обычно полностью осуществляется вручную. Дозирование реагентов и управление экспериментом также зависят от точности действий квалифицированных специалистов, которые одновременно выполняют несколько критически важных заданий. По этой причине исследования вирусной инактивации с применением растворителя или ПАВ также сопряжены с естественными изменениями, отклонениями и трудностями обеспечения воспроизводимости.

При использовании методов инактивации с растворителем или ПАВ по существу необходимо учесть еще один аспект, не свойственный для методов с низким уровнем pH. Все добавленные растворители или ПАВ в обязательном порядке должны быть удалены из лекарственного вещества или раствора иммуноглобулина. Их вывод подтверждается с помощью подходящего метода анализа. Обычно для удаления растворителя или ПАВ используется хроматография или замена буфера путем тангенциальной поточной фильтрации. Цель вывода добавленных реагентов или ПАВ в некотором смысле аналогична цели обратного pH-титрования от низкого pH для инактивации до физиологических или слабо-щелочных показателей. В масштабе буферные или хроматографические методы чаще всего имеют вид непрерывных или полунепрерывных типовых операций, в рамках которых материал направляется из емкости для выдержки через колонку или другую подходящую мембрану для замены растворителя или буфера. При этом при разработке процесса этап инактивации вирусов растворителем или ПАВ чаще всего отделен от последующего очищения или удаления. Такая практика может усложнять обеспечение непрерывности данных или информации.

Вирусная инактивация вакцин

Вирусной инактивации подвергаются различные вакцины, включая токсоидные, на основе рекомбинантного белка, субъединичные и полисахаридные вакцины и даже некоторые вакцины с вирусоподобными частицами. Как указывалось ранее, при выборе метода учитывается характер биотерапевтического продукта и спектр вирусов, которые необходимо эффективно вывести.

Как правило, для обработки живых ослабленных вакцин с вирусными частицами (где биотерапевтический продукт представляет собой вирусную частицу) рекомендуется использовать альтернативные методы или процедуры, предотвращающие внешнее вирусное заражение. Специальные методики для таких продуктов могут включать один или несколько процессов нанофильтрации или хроматографии. Эти этапы необходимы для эффективного уменьшения внешней вирусной нагрузки соответствующих сырьевых материалов. Инактивированные или разрушенные вирусы иногда подвергаются дальнейшей обработке низким уровнем pH или растворителем/ПАВ, так как желаемый иммуностимулирующий эффект продукта может сохраняться и после денатурации или других изменений.

Вирусная инактивация олигонуклеотидных продуктов или молекулярных действующих веществ не считается необходимой. Главная причина заключается в том, что свойства реагентов, условия реакции и методы обработки создают неблагоприятную для вирусов среду. В настоящее время для очистки, концентрирования и составления рецептур многих разрабатываемых и производимых олигонуклеотидных продуктов используются различные методы хроматографического выделения или замена буфера путем тангенциальной поточной фильтрации.

Технология инактивации вирусов

Точные эксперименты с большим объемом данных

С учетом потребностей в непрерывности информации и ведении электронных записей рабочие станции химического синтеза повышают эффективность процессов инактивации вирусов не только с точки зрения планирования и проведения экспериментов, но и благодаря сбору данных и обеспечению их целостности. Независимая процессно-аналитическая технология (PAT) объединяет множество задач и рабочих процессов, включая вирусную инактивацию с заменой буфера, и способствует более точному моделированию крупномасштабных процедур.

Посмотрите онлайн-демонстрацию оборудования в любое удобное время.

Повышение вирусной безопасности биотерапевтической продукции

Пожалуйста, расскажите о вашей задаче. Узнать больше Позвонить специалисту Запросить информацию Запросить цены


Что такое инактивация вирусов?

Разрушение и денатурация вирусов

Инактивация вирусов — первый из двух стандартных этапов повышения безопасности биотерапевтической продукции. Во время инактивации все вирусы в частично очищенной терапевтической суспензии либо намеренно уничтожаются, либо лишаются своих патогенных свойств в течение короткого времени. Для необратимого разрушения и денатурации вируса обычно необходимо изменить окружающую его среду.

Обычно для необратимого разрушения и денатурации структуры вируса в окружающую его среду вносятся изменения — с помощью химических, физических или даже энергетических методов. Удаление вирусов — отдельный процесс, дополняющий инактивацию. Вывод или отделение вируса от белка (белков) или производимого продукта способствует дальнейшему повышению вирусной безопасности.

Почему необходима инактивация вирусов?

Многие биотерапевтические продукты содержат вирусы или подвергаются вирусному загрязнению в ходе производства или обработки. Для нейтрализации патогенности, устранения вирусной нагрузки (количества вируса) и исключения вреда для пациента эти препараты подвергают специальной очистке, включающей два этапа — инактивацию и удаление вирусов. Обычно применение этих процессов по отдельности недостаточно эффективно. Существуют различные методы инактивации и удаления, учитывающие специфические характеристики вируса и вид биотерапевтического продукта. Для расширения спектра уничтожаемых вирусов во многих процессах биотерапевтической обработки применяется сочетание взаимодополняющих методов.

Методы инактивации вирусов

Учет размера, вида и лабильности биотерапевтического средства

Инактивация
Существует несколько методов вирусной инактивации. Наиболее распространенные из них:

  • методы с применением низкого уровня pH — особенно часто применяются к таким биотерапевтическим продуктам, как моноклональные антитела (mAbs)
  • методы с применением растворителя или ПАВ — обычно используются для полисахаридов

Реже используются такие методы инактивации вирусов, как пастеризация, обработка сухим теплом и применение парообразного теплоносителя (например, для продуктов на основе крови или сыворотки).

Удаление вирусов
Осаждение, хроматография и нанофильтрация широко освещены в литературе.

Выбор метода инактивации и удаления вирусов зависит от размера, вида и лабильности биотерапевтического продукта, метода (методов) очистки при производстве, происхождения и титра вирусов. Наряду с вирусной безопасностью важными показателями качества, которые необходимо контролировать в ходе всего процесса, являются структура и действие лекарственного вещества. Эффективность любого метода инактивации (с применением низкого уровня pH или ПАВ) обеспечивается точным контролем одновременно нескольких критических параметров процесса. Такой контроль необходим для всестороннего понимания процесса и его воздействия на лекарственное вещество. Современные рабочие станции химического синтеза поддерживают картирование процессов, стабильную работу в рамках заданных параметров, а также моделирование для переноса и масштабирования метода.

Метод вирусной инактивации с применением низкого уровня pH

Метод вирусной инактивации с применением низкого уровня pH

На процесс инактивации вирусов с применением низкого уровня pH влияют такие характеристики, как pH, длительность, температура, содержание белка и растворителя или буфера. Необратимая денатурация и эффективное уничтожение многих вирусов возможны при уровне pH 5,0–5,5. В зависимости от объема вирусов, которые подвергаются инактивации и очистке, этого диапазона может оказаться достаточно. Однако для эффективной инактивации ряда вирусов в оболочке необходим уровень pH в диапазоне 3,5–4.

Для инактивации вирусов в иммуноглобулиновых продуктах типа mAb чаще всего применяется метод с низким уровнем pH, так как он достаточно прост, компактен и, в отличие от ПАВ или растворителей, практически не требует участия оператора и дополнительных шагов по удалению. Однако подходящие и оптимальные условия инактивации зависят от самой молекулы и требуемого спектра удаления вирусов. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации необходимы исследования молекул. Эти границы и результат процесса инактивации вирусов обычно определяются полным или частичным набором переменных — критическими параметрами процесса. Они влияют на исход вирусной инактивации и, следовательно, на качество лекарственного вещества. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Обычно для исследований по вирусной инактивации с применением низкого уровня pH используется раствор иммуноглобулина заданного объема и концентрации, который помещается в емкость — например, лабораторный стакан с магнитной мешалкой. Чаще всего в качестве материала исследования выступают иммуноглобулины, у которых начальный pH близок к физиологическим условиям. Задача исследователей — определить параметры добавления реагентов. Для этого проводится ручное титрование с бюреткой или пипеткой с периодической регистрацией значений pH. После выдерживания в условиях низкого уровня pH с соблюдением других параметров в течение времени, рекомендованного для инактивации целевых вирусов, лекарственное вещество или раствор иммуноглобулина подвергают обратному титрованию. Уровень pH при этом изменяется от низкого до физиологического или слабо-щелочного. Это конечный этап вирусной инактивации с помощью выдерживания при низком уровне pH. Однако в ходе такого исследования с применением титрования при низком уровне pH для анализа в лаборатории и регистрации различных качественных характеристик (например, оценки агрегации или дезамидирования методом эксклюзионной хроматографии по размеру) требуется отбор проб. Хотя опытные ученые выполняют все процедуры с нужной точностью, инактивация вирусов — кропотливый ручной процесс, сопряженный с естественными изменениями и отклонениями, которые затрудняют получение воспроизводимых результатов.

Метод вирусной инактивации с применением низкого уровня pH

Хотя главной целью изучения вирусной инактивации при низком уровне pH на последующих этапах биотехнологического процесса является определение объема добавляемых реагентов и длительности выдерживания, не менее важно определение кинетики процесса и влияния его комбинированных параметров. В конечном итоге эти характеристики необходимы для разработки надежного и оптимального процесса инактивации. Тем не менее в ходе такой разработки ученые часто не отслеживают температуру — она остается неконтролируемым параметром.

Причиной может быть использование для вирусной инактивации выдерживанием экспериментальных или даже коммерческих систем промышленного типа либо передаточных емкостей, которые регистрируют температуру, но не регулируют ее. Еще один параметр, который часто не учитывается исследователями инактивации при низком уровне pH, которые проводят опыты на ручных платформах с магнитными мешалками, — репрезентативность масштаба, в частности репрезентативность перемешивания. Без сбора данных о такой простой процедуре невозможно подтвердить правильность и стабильность заданных условий исследования.

Характеристика процесса инактивации вирусов при низком уровне pH

Характеристика процесса инактивации вирусов при низком уровне pH

Вирусная инактивация с применением низкого уровня pH на последующих этапах обработки создает риск агрегации в продукте с моноклональными антителами. В презентации Хирен Д. Ардешна (Hiren D. Ardeshna) из компании GlaxoSmithKline представлена многофакторная экспериментальная схема, которая позволяет исследовать влияние четырех параметров процесса:

  • конечная точка низкого уровня pH
  • время выдерживания при низком уровне pH
  • длительность титрования с низким уровнем pH
  • длительность титрования с нейтрализацией

Инактивация вирусов при обработке на последующих этапах

Обработка растворителем/ПАВ для инактивации вирусов

Методы с растворителем или ПАВ чаще всего используются для инактивации вирусов в оболочке. Применяемые реагенты оказывают незначительное влияние на лабильность терапевтических белков или антител, тогда как некоторые методы с применением низкого pH могут вызывать денатурацию или дезамидирование. Многие требования к вирусной инактивации с растворителем или ПАВ аналогичны требованиям к методам с низким уровнем pH — в первую очередь необходимо определить объем добавляемого реагента (в данном случае растворителя или ПАВ) и длительность процесса. Как и в случае с инактивацией при низком pH, конкретные условия зависят от вида иммуноглобулина или лекарственного вещества. По этой причине для установления и проверки проектного поля или рабочих границ эффективной вирусной инактивации с растворителем или ПАВ необходимы исследования молекул. Эти границы и результат процесса инактивации аналогично определяются критическими параметрами процесса. К ним относятся температура, содержание белка, содержание растворителя или ПАВ, время выдерживания в условиях инактивации, а также перемешивание и эффективность гомогенизации растворителя или ПАВ. Выявление и учет этих факторов положительно скажется на качественных и количественных характеристиках продукта.

Хотя в исследованиях вирусной инактивации с применением ПАВ не требуется такого же титрования реагента, как в методах с низким уровнем pH, оценка проектного поля с критически важными переменными остается обязательным условием. Как и в случае с низким pH, определение характеристик инактивации вирусов растворителем или ПАВ обычно полностью осуществляется вручную. Дозирование реагентов и управление экспериментом также зависят от точности действий квалифицированных специалистов, которые одновременно выполняют несколько критически важных заданий. По этой причине исследования вирусной инактивации с применением растворителя или ПАВ также сопряжены с естественными изменениями, отклонениями и трудностями обеспечения воспроизводимости.

При использовании методов инактивации с растворителем или ПАВ по существу необходимо учесть еще один аспект, не свойственный для методов с низким уровнем pH. Все добавленные растворители или ПАВ в обязательном порядке должны быть удалены из лекарственного вещества или раствора иммуноглобулина. Их вывод подтверждается с помощью подходящего метода анализа. Обычно для удаления растворителя или ПАВ используется хроматография или замена буфера путем тангенциальной поточной фильтрации. Цель вывода добавленных реагентов или ПАВ в некотором смысле аналогична цели обратного pH-титрования от низкого pH для инактивации до физиологических или слабо-щелочных показателей. В масштабе буферные или хроматографические методы чаще всего имеют вид непрерывных или полунепрерывных типовых операций, в рамках которых материал направляется из емкости для выдержки через колонку или другую подходящую мембрану для замены растворителя или буфера. При этом при разработке процесса этап инактивации вирусов растворителем или ПАВ чаще всего отделен от последующего очищения или удаления. Такая практика может усложнять обеспечение непрерывности данных или информации.

Вирусная инактивация вакцин

Вирусной инактивации подвергаются различные вакцины, включая токсоидные, на основе рекомбинантного белка, субъединичные и полисахаридные вакцины и даже некоторые вакцины с вирусоподобными частицами. Как указывалось ранее, при выборе метода учитывается характер биотерапевтического продукта и спектр вирусов, которые необходимо эффективно вывести.

Как правило, для обработки живых ослабленных вакцин с вирусными частицами (где биотерапевтический продукт представляет собой вирусную частицу) рекомендуется использовать альтернативные методы или процедуры, предотвращающие внешнее вирусное заражение. Специальные методики для таких продуктов могут включать один или несколько процессов нанофильтрации или хроматографии. Эти этапы необходимы для эффективного уменьшения внешней вирусной нагрузки соответствующих сырьевых материалов. Инактивированные или разрушенные вирусы иногда подвергаются дальнейшей обработке низким уровнем pH или растворителем/ПАВ, так как желаемый иммуностимулирующий эффект продукта может сохраняться и после денатурации или других изменений.

Вирусная инактивация олигонуклеотидных продуктов или молекулярных действующих веществ не считается необходимой. Главная причина заключается в том, что свойства реагентов, условия реакции и методы обработки создают неблагоприятную для вирусов среду. В настоящее время для очистки, концентрирования и составления рецептур многих разрабатываемых и производимых олигонуклеотидных продуктов используются различные методы хроматографического выделения или замена буфера путем тангенциальной поточной фильтрации.

Технология инактивации вирусов

Точные эксперименты с большим объемом данных

С учетом потребностей в непрерывности информации и ведении электронных записей рабочие станции химического синтеза повышают эффективность процессов инактивации вирусов не только с точки зрения планирования и проведения экспериментов, но и благодаря сбору данных и обеспечению их целостности. Независимая процессно-аналитическая технология (PAT) объединяет множество задач и рабочих процессов, включая вирусную инактивацию с заменой буфера, и способствует более точному моделированию крупномасштабных процедур.

Посмотрите онлайн-демонстрацию оборудования в любое удобное время.

Читайте также: