Умирает ли вирус вместе с человеком

Обновлено: 28.03.2024

Известно, что погибших от коронавируса хоронят по специальному алгоритму. Действительно ли так высок риск заразиться COVID-19 от тела покойника, рассказала корреспонденту zakon .kz профессор кафедры микробиологии и вирусологии КазНМУ имени Асфендиярова Камиля Мустафина.

Не всегда казахстанцы четко придерживаются предписаний, и стараются соблюсти все религиозные правила при прощании с умершим родственником.

В рекомендациях ВОЗ указано, что тела погибших не представляют угрозы заражения. Однако профессор кафедры микробиологии и вирусологии КазНМУ имени Асфендиярова Камиля Мустафина пояснила, что вирус может жить в телах умерших некоторое время и передаваться живым.

Поскольку в мертвом теле вирус не может поддерживать свою жизнеспособность, то, соответственно, после смерти через некоторое время он также гибнет. Однако риск заразиться от жертв коронавируса возникает из-за того, что труп может быть еще какое-то время быть заразным при прямом контакте. Например, после смерти пациента с подтвержденным диагнозом из легких в первый момент может выходить воздух, в котором содержится вирус. Кроме того, в первое время он может быть в жидкостях, которые выделяет тело. Поэтому вскрытие необходимо производить со всеми мерами предосторожности. Кроме того, вирус может оставаться на теле и инструментах после посмертного обследования. Учитывая это, а также то, что вирус любит низкую температуру, влажность (все эти условия есть в прозектуре) опасность может сохраняться, прежде всего, для врачей-патологоанатомов и для тех, кто непосредственно занимается организацией погребения (работники служб захоронения, близкие родственники и т.д). Следовательно, они должны работать в спецодежде. Через определенное время вследствие гибели вируса сам труп не представляет опасности для окружающих, - говорит эксперт.

При этом профессор кафедры микробиологии и вирусологии КазНМУ отмечает, что сам вирус COVID-19 еще малоизучен, а значит непредсказуем. Поэтому при захоронении всем без исключения участникам похоронной процессии необходимо надевать средства индивидуальной защиты и следовать правилам санитарных врачей.

Но что на счет религиозных правил? Камиля Мустафина считает, что утвержденные правила не нарушают основные религиозные требования.

Что касается вопроса захоронения по религиозным обычаям, например, мусульман, умерших от заражения коронавирусом. Захоронение осуществляется без гроба, но с использованием мер предосторожности: тело обрабатывается дезинфицирующим раствором и его заворачивают в кебін, пропитанный бактерицидным раствором, обрабатывается могила и т.д. Это, в принципе, безопасно. Опять же следует обратить внимание: в условиях пандемии все эти вопросы регулируются Постановлениями Главного санитарного врача с учетом обстановки и имеющихся новых данных о свойствах вируса. Таким образом, все эти меры помогают предупредить возможное распространение и передачу коронавируса от покойного к живым, с уважением отнестись к покойному и соблюсти все религиозные обычаи и правила захоронения, - сообщила Мустафина.

Риск заразиться, хоть и небольшой, есть и при омовении тела покойного.

Немного о биологических жидкостях организма (кровь, моча, слюна, сперма, пот, грудное молоко). В принципе, коронавирус, как и другие вирусы может находиться в них, но для заражения необходима инфицирующая доза. Этого в трупе уже нет. Учитывая это и биологические свойства вируса можно сказать, что тело покойного какое-то время содержит вирус и поэтому обработка тела умершего от коронавирусной инфекции и омовение должно производиться строго с учетом всех санитарно-эпидемиологических норм с обязательным использованием средств индивидуальной защиты по правилам, прописанным в постановлении главного санитарного врача, - уверяет Камиля Мустафина.

При этом профессор утверждает, что посещать могилу покойного, умершего от коронавируса или пневмонии, неопасно, так как перед и после захоронения по правилам могилу обрабатываются специальными средствами, а сам вирус, как было сказано выше, погибает в теле умершего.

Согласно постановлению главного государственного санитарного врача, при установлении факта смерти в медицинских организациях от коронавирусной инфекции, с подозрением на COVID-19 или от пневмонии неустановленной этиологии тела умерших доставляются в обязательном порядке в патологоанатомическое бюро для проведения необходимых мероприятий установленных законом. При захоронении в гробу тело оборачивают плотной тканью смоченной дезинфицирующим раствором, следом полиэтиленовой пленкой и снова оборачивают плотной тканью. Кроме этого, правила запрещают родным умершего совершать самостоятельно ритуал омовения, запрещается прощаться с покойным и приближаться к телу. Процесс захоронения проводится с минимальным количеством родных специальными ритуальными службами.


Обзор

Авторы
Редакторы


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Чтобы защитить нас от опасных заблуждений, давайте разберемся:

  • как устроен вирус ;
  • зачем вирусу попадать в организм человека;
  • как иммунитет реагирует на вирусы;
  • как медицина может помочь иммунитету, если сам он не справляется.

В статье речь идет в основном о новом коронавирусе. — Ред.

Видео. Вирусы и иммунитет: кто кого?

Как устроен вирус

Человек состоит из клеток, в которых очень важную роль играют белки. В ядре клетки хранится ДНК: все вы, наверное, видели картинки с этими переплетенными нитями из разноцветных кусочков.

Вирусы и иммунитет: кто кого?

Кусочки эти одинаковые у всех: и у людей, и у животных, и у растений, и у вирусов. Именно последовательность кусочков ДНК определяет особенности белков в нашем организме, а значит, влияет на наш внешний вид, работу органов и состояние здоровья.

Чтобы разобраться, как клетки производят белки, давайте представим следующее.

Допустим, вы производите посуду. Суперценный образец хранится в сейфе, и вы не готовы вынимать свой эталон из сейфа, даже чтобы сделать новый экземпляр. Поэтому специальный человек прямо в сейфе делает слепок кружки и приносит этот слепок рабочим, которые изготовят новую кружку по форме, получая от курьеров необходимые кусочки материала.

Вирусы и иммунитет: кто кого?

В ядре клетки, как в сейфе, хранится ДНК. С помощью белков-ферментов с ДНК снимается копия — информационная РНК. РНК попадает в рибосому, где начинается сборка белка. А транспортная РНК подносит фрагменты, из которых и собираются белки .

Вирусы и иммунитет: кто кого?

Так работает производство белка не только у человека, но и у многих других живых существ.

Все они адаптируются к среде, как могут, чтобы выжить и дать потомство. Человек тоже приспособился, и в этом ему сильно помог головной мозг. Он позволил ему придумывать приспособления для выживания и передавать информацию другим людям. Благодаря обмену знаниями и их накоплению человек может жить очень долго, потому что поселился в прочных зданиях, изобрел множество приспособлений и научился справляться с болезнями [1].

Раньше людям с рождения угрожали хищники, погодные катаклизмы, огромное количество вирусов и бактерий. Оспа, чума, грипп, малярия, бешенство, энцефалит, столбняк — люди умирали сотнями и тысячами и от эпидемий, и от банальных царапин. Но благодаря достижениям медицины мы научились лечить и предотвращать многие из них [2], [3].

Сейчас может показаться, что этих угроз вообще никогда не существовало. А если окажется, что они существуют до сих пор, очень хочется обвинить кого-нибудь в их создании, как будто они сами не могли появиться из природы. Но вообще-то могли.

Зачем вирусу попадать в организм человека

Вирус отличается от других живых организмов, потому что не питается, не выдает отходы жизнедеятельности, не стареет (вокруг вирусов до сих пор идет дискуссия, стоит ли их вообще считать формой жизни). Но, как и мы, вирус размножается и может умереть. Вирус похож на флешку: снаружи оболочка с шипиками-разъемами для подключения, а внутри информация (ДНК или РНК).

Вирусы и иммунитет: кто кого?

С помощью шипиков вирус пытается попасть внутрь клетки организма, как флешка пытается подключиться к компьютеру. Если все получилось, вирус забирается внутрь, раздевается и начинает диверсию [4].

Если у вируса внутри ДНК, он контрабандой доставляет ее в ядро, запускает копирование этой ДНК, создание РНК и далее по порядку. Если это РНК, он просто подменяет родную РНК клетки на свою [5].

В обоих случаях клетка делает белки не для себя, а для новеньких вирусов.

Вирусы и иммунитет: кто кого?

Когда клетка изжила весь свой ресурс, она лопается. Оттуда прут детки-вирусы, которые с помощью своих шипиков проникают в другие клетки, и процесс повторяется [6], [7].

Как иммунитет реагирует на вирусы

Итак, в организм ворвался чужак, использует наши клетки. Организм должен как-то отреагировать.

Иммунная система как раз отвечает за способность человека противостоять внешним угрозам. Как происходит иммунная реакция именно на вирусы?

Ключевые иммунные клетки — это фагоциты, B-лимфоциты , T-хелперы и T-киллеры.

Латинская буква B происходит от латинского названия bursa fabricii — иммунного органа птиц, в котором их впервые обнаружили.

Вирусы и иммунитет: кто кого?

Когда вирус попадает в клетку, та выставляет на поверхности сигнал о том, что она болеет. На этот сигнал тревоги приходят T-киллеры и фагоциты и пытаются уничтожить зараженные клетки и вирусы.

Вирусы и иммунитет: кто кого?

По пути фагоциты хватают сигнальную метку и передают ее T-хелперам. Это клетки-курьеры, которые отправляют полученный материал на изучение B-лимфоцитам. Они разрабатывают специальное оружие против вирусов и зараженных клеток — антитела. Антитела, как черная метка, цепляются за пораженную клетку, и T-киллеры могут быстрее ее обнаружить.

Вирусы и иммунитет: кто кого?

Если метка зацепилась за вирус, на сигнал приходит еще одно оружие — система комплемента, похожая на гранату, которая срабатывает, если два кусочка гранаты соединить вместе.

Вирусы и иммунитет: кто кого?

То есть антитела — это ускоритель иммунной реакции, который обращает внимание T-киллеров на зараженные клетки и подключает систему комплемента. Таким образом организм справляется гораздо быстрее и теряет меньше здоровых клеток.

Часть B-лимфоцитов, изучив вирус, вместо того чтобы создавать антитела прямо сейчас, остается с новыми знаниями про запас, на случай повторного заражения, и превращаются в клетки памяти. Если организм столкнется с вирусом еще раз, то просто активирует клетки памяти. И мы получим моментальные точные выстрелы снайперов и гранатометчиков [8], [9].

Вирусы и иммунитет: кто кого?

Пока вся эта канитель происходит, человеку может стать так плохо, что потребуется госпитализация или даже реанимация. Но накопленный опыт, технологии и медицина как-то должны помогать таким пациентам.

Как медицина может помочь иммунитету, если сам он не справляется

На каком этапе иммунной реакции человек может вмешаться?

Начнем с этапа, когда вирус пытается взломать клетку. У коронавируса есть ключики от слизистых: можно потрогать зараженный объект руками и перенести заразу себе, прикоснувшись к лицу. Носители могут чихнуть или кашлянуть на вас. Капельки слюны распыляются, когда вы разговариваете или смеетесь [10].

С руками все просто: можно смыть верхний слой кожного жира, на котором остаются вирусные частицы. А вот клетки слизистых надо как-то отгородить, например, маской . Но она не защищает глаза. Вирусы, попадая на маску, никуда не исчезают — они там копятся. Важно не занести их, когда вы будете поправлять или снимать маску. А самодельные тканевые маски могут быть бесполезны, если у них широкие поры.

Кардинальный метод защиты (и пока лучший) — уйти на карантин. Но в таком случае плохо становится не здоровью людей, а экономике.

Поможет ли молитва? Нет, клетки устроены одинаково и у церковнослужителя, и у бабули, и у знаменитости.

Поможет ли водка от вируса? Нет. Когда вы пьете алкоголь, вы не дезинфицируете организм, а ослабляете его. Так иммунным клеткам придется даже сложнее [12].

Чеснок, имбирь и другие чудеса народной медицины не работают антисептиком [11]. Чтобы разрушить вирусную частицу, нужен раствор с содержанием спирта не менее 60%, например, специальный антисептик для рук. Им логично протирать руки, поручни, дверные ручки и мобильные телефоны.

Допустим, попадание вируса в организм предотвратить не удалось. Начинается месиво: фагоциты и T-киллеры не справляются, B-лимфоциты стараются делать антитела и клетки памяти, пока вирус вовсю использует наши клетки. За это время человеку может стать очень плохо.

Можно ли помочь B-лимфоцитам? Да, можно еще до заражения ввести мертвый вирус, кусок вируса или подобие вируса, чтобы B-лимфоциты потренировались и заранее сделали антитела. Такой метод называется прививкой [13–16].

Вирусы и иммунитет: кто кого?

Вирусы и иммунитет: кто кого?

Создание лекарств занимает годы. Нужно найти действующее вещество, способ доставлять его в клетки, сделать из него препарат, который не испортится при хранении и не убьет побочными эффектами .

Сайт-агрегатор отчетов по клиническим исследованиям — ClinicalTrials.gov.

Если человеку стало очень плохо, нужно поддержать его организм, чтобы он выжил, пока побеждает вирус. Для этого людям нужны койки в больницах, аппараты ИВЛ и врачи. Но если инфекция быстро распространяется, много людей одновременно нуждаются в помощи.

Напомним, что ивазивная ИВЛ травматична и сама по себе опасна: например, тем, что может повлечь за собой заражение пациента дополнительной внутрибольничной инфекцией. — Ред.

Вирусы и иммунитет: кто кого?

Чтобы люди не умирали без помощи медиков, нужно искусственно замедлить скорость распространения вируса — сидеть дома. Чем больше людей игнорируют карантин, тем больше тех, кому не хватит медицинской помощи, а значит, будет больше смертей [18].

Если организм справился с инфекцией, у него появляются клетки памяти, поэтому он не будет носителем и не заразит других людей. Если клетки памяти будут у большинства, появится коллективный иммунитет. В таких условиях человек из группы риска вряд ли встретит носителя. Когда все носители переболеют, вирус среди людей не будет встречаться.

Вирусы и иммунитет: кто кого?

Некоторые страны уже снимают карантин. Но еще не понятно, есть ли коллективный иммунитет и не вызовет ли это новую волну заражений. В случае с коронавирусом пока неизвестно, сколько живут клетки памяти [19].

В России все еще каждый день заболевает по 8–10 тысяч человек. Возможно, в вашем регионе пандемия только набирает обороты . А значит, любой человек на улице может оказаться носителем.

В наших силах если не остановить, то хотя бы замедлить темпы, чтобы люди не умирали без помощи медиков.

Что же делать людям в борьбе с вирусом?

Защищаться мытьем рук и антисептиками? Искать вакцину или лекарство? Ждать, когда появится коллективный иммунитет? Или замедлять социальную активность, чтобы одновременно не заболело много людей? Сейчас мы делаем всё сразу.

Большинство стран мира следуют рекомендациям ВОЗ. Сайт этой организации переведен на русский язык. Там можно найти комментарии к мифам о коронавирусе и официальные рекомендации как для медиков, так и для населения. Если кто-то предлагает вам чудесное лекарство от болезни, проверьте, написали ли о нем эксперты ВОЗ.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.


Обзор

Пережившей лихорадку Эбола медсестре Мвамини Кахиндо не нужно облачаться в защитный костюм, чтобы ухаживать за зараженными вирусом детьми.

Лечебный центр в Бутембо, Демократическая Республика Конго; фото сайта CBC.ca.

Автор
Редакторы


Партнер номинации — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Генеральный партнер конкурса — международная инновационная биотехнологическая компания BIOCAD.

Насколько быстро вирусный возбудитель может распространиться по миру, мы наглядно убедились в 2020 году: полгода не пройдет, а заболевшие будут уже на всех континентах! Если он к тому же отлично передается контактным путем через бытовые предметы и от него в среднем умирает более 50% людей — перед вами идеальный кандидат в убийцу миллионов! Вирус Эбола (рис. 1) именно такой: проникает в организм через поврежденную кожу или слизистые, быстро распространяется через контактных и в среднем убивает 65% зараженных (количество погибших варьируется от 25% до 90% — рис. 2) [1], [2].

Вирус Эбола

Рисунок 1. Вирус Эбола (Ebolavirus) — РНК-содержащий вирус из семейства Filoviridae (филовирусов), в котором соседствует с вирусами Марбург (Marburgvirus) и Лловиу (Lloviu cuevavirus). Вирусные частицы филовирусов имеют нитевидную (филаментоподобную) форму. Как у многих других возбудителей, у Ebolavirus есть несколько разновидностей (подтипов): Бундибуджио (BDBV), Заир (ZEBOV), Рестон (RESTV), Судан (SUDV), Таи Форест (TAFV). Наиболее опасным для людей является ZEBOV [1]; случаев заражения или летального исхода от RESTV (обнаружен в Китае и на Филиппинах) не было [2].

Распределение смертности

Рисунок 2. Распределение смертности во время основных вспышек лихорадки Эбола (данные указаны в хронологическом порядке; цифрами обозначено количество вспышек в данной стране). Слева: мужчина с ребенком с симптомами лихорадки Эбола ожидают прием в клинику в Монровии, Либерия.

Не ходите, дети, в Африку гулять

История лихорадки Эбола (по крайней мере та, которая известна нам) началась в 1976 году. В тот год болезнь унесла жизни нескольких сотен человек в Заире (280 погибших) и Судане (151).

Сейчас Заир называется Демократической Республикой Конго (ДРК).

Нулевым пациентом (index case, patient zero) называют первого человека, заразившегося данным возбудителем. Его не всегда можно считать пациентом, то есть обратившимся за медицинской помощью, так как нельзя исключить бессимптомное течение болезни. Однако в большинстве случаев именно он становится тем, от кого по цепочке заражаются остальные.

Несмотря на то, что в Ямбуку была небольшая клиника — госпиталь, курируемый бельгийской католической миссией (рис. 3), — речь идет о глухой африканской провинции, более чем в 1000 км от столицы. В клинике практиковали монахини, не имевшие медицинского образования, и местная медсестра. Из медикаментов и инструментов там было несколько шприцев, вакцины, жаропонижающие, витамины, физраствор и средства от малярии. Именно туда в конце августа 1976 года и обратился недавно вернувшийся из отпуска, в котором охотился на лесных животных, учитель Локела по поводу плохого самочувствия и температуры [3].

Деревня Ямбуку и местная клиника (1976 год)

Рисунок 3А. Деревня Ямбуку и местная клиника (1976 год).

Сотрудники бельгийской миссии

Рисунок 3Б. Сотрудники бельгийской миссии, жизни которых унесла лихорадка Эбола.

Запись в дневнике миссии

Рисунок 3В. Запись в дневнике миссии, описывающая случай Локелы; журнал с записями о пациентах клиники в Ямбуку.

Осмотрев его, сестры неуверенно предположили малярию и начали лечение инъекциями хлорохина. Сначала это подействовало — симптоматика на некоторое время ослабла; однако через несколько дней жена Локелы пришла в госпиталь с просьбой о помощи. Сестры поспешили в хижину и воочию убедились, что это точно не малярия: Мамбало лихорадил и истекал кровью, его периодически рвало. Облегчить его страдания сестры не смогли, и в начале сентября 1976 года он умер в агонии.

После похорон, казалось, всё пришло в норму, все были здоровы. Однако вскоре жена, теща, сестра, дочь и некоторые друзья Локелы, присутствовавшие на похоронах — всего 21 человек, — обратились в клинику с похожими симптомами. 18 из них скончались.

Колдовство, недоверие и страх: как заражаются смертельной лихорадкой

Считается, что носителями Ebolavirus являются фруктовые летучие мыши из семейства Pteropodidae (Hypsignathus monstrosus, Epomops franqueti и Myonycteris torquata [3]), а переносчиками могут быть шимпанзе, гориллы, лесные антилопы и дикобразы, мясо которых люди употребляют в пищу. Вирус распространяется через контакт с кровью, выделениями, жидкостями и органами зараженных животных или человека, а потом через поврежденную кожу или слизистые передается соплеменникам, родственникам, друзьям, врачам. В плане заражения большую опасность представляют бытовые предметы (особенно загрязненные физиологическими жидкостями больных) и мертвые тела. А так как речь идет об Африке, то умершие играют не последнюю роль.

Вспышка развивалась стремительно — ничего не подозревая о смертельной угрозе, жители Ямбуку и пациенты клиники курсировали между деревнями. Позже сотрудники ВОЗ установят, что практически все инфицированные либо получали инъекции медикаментов, либо были в тесном контакте с заболевшими [4]. Заразились и умерли 11 из 17 сотрудников клиники (рис. 4), в том числе медсестра и две монахини-бельгийки (когда их перевели в столичный госпиталь, там возник еще один очаг, но его быстро локализовали) [4].

Умершие от лихорадки Эбола сотрудницы клиники в Ямбуку и медсестра

Рисунок 4. Умершие от лихорадки Эбола сотрудницы клиники в Ямбуку и медсестра

15 сентября 1976 года в Ямбуку был направлен местный врач Нгои Мушола, который написал в отчете, что люди мрут от неизвестной болезни, и ни один из практикуемых методов лечения не дает результата. Это стало первым официальным описанием лихорадки Эбола. 30 сентября клиника в деревне закрылась. В надежде получить медицинскую помощь, заболевших начали отвозить в близлежащие деревни. В итоге вспышкой оказались охвачены 55 из 550 деревень, жители которых были проверены в ходе расследования (рис. 5) [4].

Эбола не щадила никого: сильные и слабые, молодые и старые, женщины, мужчины, дети — заражались все. Однако у вспышки в Ямбуку была одна особенность: наибольшая заболеваемость наблюдалась среди молодых женщин 15–29 лет. Это связывают с тем, что рассадником инфекции стала клиника: женщины (в том числе беременные) заражались через плохо продезинфицированные шприцы. Трагичность ситуации заключалась в том, что многие из них не нуждались в этих уколах — сестры практиковали инъекции витаминов в дородовом отделении.

Посещение группой наблюдения одной из деревень в окрестностях Ямбуку

Рисунок 5А. Посещение группой наблюдения одной из деревень в окрестностях Ямбуку (1976 год).

Карта распространения

Рисунок 5Б. Для того, чтобы отследить распространение вируса, сотрудники команд наблюдения рисовали карты и отмечали на них каждую деревню, которую посетили.

Забор крови у местных жителей

Рисунок 5В. Забор крови у местных жителей и исследование образцов в лаборатории католической миссии (Ямбуку, 1976 год).

Гвидо ван дер Гроен

Рисунок 5Г. Один из сотрудников команды наблюдения Гвидо ван дер Гроен у своего гибкого настенного изолятора, Ямбуку (1976 год).

Питер Пиот

Когда это выяснилось, ВОЗ установила строгий карантин. Вспышку локализовали; последняя смерть была зафиксирована 5 ноября 1976 года [4], и целых 19 лет (вплоть до 1995 года) об Эболе, кроме одного смертельного случая в 1977 году, в Заире не слышали.

Расследование вспышки в Ямбуку привело ВОЗ в Южный Судан, где в ноябре 1976 года распространялась аналогичная болезнь (заразились 280 человек, 151 скончался). Судя по всему, первым заболевшим был один из кладовщиков хлопчатобумажной фабрики [1]. Сначала сотрудники ВОЗ предположили, что оба очага связаны между собой через миграцию или торговлю [4], однако позже выяснилось, что штаммы были разными, и, следовательно, очаги — тоже [3].

Нулевые пациенты некоторых из последующих вспышек Эболы

Информационная кампания про опасность заражения лихорадкой Эбола

Рисунок 6А. Информационная кампания про опасность заражения лихорадкой Эбола в Конакри, Гвинея.

Паулина Кафферкей

Рисунок 6Б. Медсестру из Шотландии Паулину Кафферкей, бывшую волонтером в Сьерра-Леоне, перевозят из Глазго на лечение в Лондон после того, как у нее обнаружили лихорадку Эбола.

История лихорадки Эбола — это история о том, как люди, презрев опасность, продолжают жить по старинке и не хотят менять свои привычки (рис. 6). Врачей это тоже касается — зачастую вирус распространялся именно через зараженных медработников.

От Эболы до ковида

История разработки вакцин против лихорадки Эбола

Рисунок 7. История разработки вакцин против лихорадки Эбола [1], [9], [10].

иллюстрация автора статьи

Видео 1. Как работают векторные вакцины.

В конце декабря 2015 года российский Минздрав одобрил две вакцины против лихорадки Эбола Центра им. Гамалеи (обе формируют иммунитет к гликопротеину GP — поверхностному белку Ebolavirus, то есть несут ген, запускающий его синтез):

С клиническими исследованиями в отношении MERS связаны определенные трудности, так как со времени вспышки 2014 года (662 случая), этим вирусом заболевают не более 100–200 человек в год, поэтому набрать достаточное количество участников III фазы сложно.

Секрет фирмы — клинические исследования российских вакцин

Вероника Скворцова с российскими вакцинами против лихорадки Эбола (2016 год)

Рисунок 8. Вероника Скворцова с российскими вакцинами против лихорадки Эбола (2016 год).

  • головная боль;
  • боль в месте введения;
  • слабость и чувство усталости.
  • по результатам анализа реакции вирусной нейтрализации, на 28 день после полного курса вакцинации у 93,1% добровольцев были обнаружены нейтрализующие антитела со средним титром 1:20.
  • Стимуляцию клеточного иммунитета оценивали на основании выделения мононуклеарными клетками гамма-интерферона (позитивный результат был у всех добровольцев на 42 день исследования).

Получается, что у 84 человек 18–55 лет, проживающих в России, вакцина показала близкую к 100% эффективность (по крайней мере, в отношении стимуляции гуморального и клеточного иммунного ответа). Повторился ли этот впечатляющий результат во время испытаний в Гвинее, неизвестно.

От Zabdeno/Mvabea до Janssen (векторные вакцины от Johnson & Johnson)

Векторная вакцина Johnson & Johnson против лихорадки Эбола уже получила одобрение Европейского агентства по лекарственным средствам (ЕМА) для применения в ЕС и находится на рассмотрении ВОЗ. От противоковидной Janssen она отличается генетической начинкой, количеством доз и одним из векторов:

  • Janssen — однодозовая вакцина на Ad26, несущая ген шиповидного белка коронавируса SARS-CoV-2;
  • Zabdeno/Mvabea — двухдозовая вакцина на Ad26 (Ad26.ZEBOV) и модифицированном вакцинном вирусе оспы Анкара (MVA-BN-Filo) с геном, кодирующим поверхностный белок GP.

Клинические испытания Zabdeno/Mvabea проходили в Европе, ДРК, Танзании и Руанде. Во время вспышек лихорадки Эбола 2018–2020 годов в ДРК и Руанде ею привили более 50 000 человек. Согласно данным на 4 июня 2021 года, хотя бы одной дозой этой вакцины привиты 235 000 человек.

Единственная и неповторимая Ervebo от MSD (rVSV-ZEBOV)

Рекомбинантная векторная вакцина на основе вируса везикулярного стоматита Ervebo — самая успешная на сегодняшний день разработка, которую применяли во время эпидемии 2014–2016 годов в Африке (рис. 9). И создали ее отнюдь не в недрах MSD (Merck & Co., Inc.)! Первоначально над ней работали ученые из Агентства общественного здравоохранения Канады, дорабатывали — в небольшой компании NewLink Genetics, и только потом права перешли к американской MSD (Merck & Co., Inc.). Первые фазы клинических испытаний Ervebo на здоровых взрослых начались в 2014 году. Они проходили в ЕС, Кении, Габоне и США. Предварительные результаты III фазы в Гвинее показали, что вакцина высокоэффективна при стратегии кольцевой вакцинации [19].

При кольцевой вакцинации выявляют всех пациентов с лихорадкой Эбола и составляют круг их общения — членов семьи, родственников, соседей, коллег, друзей. Каждого человека из этого круга необходимо привить. На эффективность кольцевой вакцинаций влияет не только наличие достаточного количества вакцины — в Африке проблемы возникают на каждом шагу: отсутствие электричества, что приводит к необходимости использовать специальные холодильники; труднодоступность многих поселений; гражданская война в ДРК и др.

Молодой жительнице провинции Гоме (ДРК) делают прививку

Рисунок 9A. Молодой жительнице провинции Гоме (ДРК) делают прививку от лихорадки Эбола.

Жители провинции Монровия

Рисунок 9Б. Жители провинции Монровия (Либерия) празднуют признание Либерии свободной от лихорадки Эбола, 2015 год.

Благодарю врача-биофизика Кирилла Скрипкина за помощь в подготовке статьи.

Читайте также: