В благоприятных условиях вирусы способны к бесполому размножению

Обновлено: 28.03.2024

Цикл размножения вирусов. Прикрепление или адсорбция вируса.

Цикл репродукции вирусов при продуктивной инфекции представляет собой специфическую последовательность событий, приводящих к образованию нового потомства вирионов. Его можно разделить на несколько стадий: адсорбция вирионов на поверхности клетки, проникновение вируса или вирусного нуклеопротеида внутрь клетки, депротеинизация генома, синтез вирусных компонентов, формирование и выход из клетки зрелых вирионов. Иногда не все стадии протекают последовательно и полностью даже при продуктивной инфекции. При заражении вирусной нуклеиновой кислотой отсутствует стадия депротеинизации. Цикл репродукции вируса может прерываться на какой-либо промежуточной стадии, и в этом случае инфекционные вирионы не образуются (абортивная инфекция).

Классическое изучение кривой роста вируса в одном цикле репродукции предполагает одновременное инфицирование клеток культуры с использованием высокой множественности заражения (М=10—100) и определение накопления вируса через определенные промежутки времени.

Прикрепление (адсорбция) вирионов к поверхности клетки - первая стадия вирусной инфекции. Для того, чтобы началась инфекция, вирионы должны быть способны прикрепляться к клетке. Безусловно, этот процесс в организме является более сложным, чем в культуре клеток.

Детальное изучение процесса адсорбции вирусов показало, что он состоит из двух быстро следующих друг за другом периодов — обратимого и необратимого. В период обратимой адсорбции вирус можно удалить с поверхности клетки при обработке версеном, хемотрипсином и другими химическими веществами. При необратимой адсорбции вирус удалить с поверхности клетки не удается.

размножение вируса гриппа - схема

Первичный контакт с клеткой происходит в результате случайных столкновений вирионов с поверхностью клетки. Количество стабильных прикреплений вириона к клетке во много раз меньше количества случайных столкновений.

В основе прикрепления вируса к клетке лежат два механизма — неспецифический и специфический. Первый из них определяется силами электростатического взаимодействия, возникающими между разноименно заряженными группами, расположенными на поверхности клетки и вируса. В этом процессе, прежде всего, могут участвовать положительно заряженные аминные группы вирусного белка и отрицательно заряженные группы клеточной поверхности. В пользу электростатического взаимодействия между клеткой и вирусом свидетельствуют данные о зависимости присоединения вирионов к клеткам от ионной силы раствора и его рН, наличия в среде одно- и двухвалентных катионов и присутствия отрицательно заряженных групп на поверхности клетки.
Наиболее важным механизмом прикрепления вируса является специфическое взаимодействие рецепторов вируса с комплементарными рецепторами клетки.

Прикрепление происходит за счет связи между вирионными прикрепительными белками на поверхности вирионов и рецепторами на плазматической мембране клеток.
На поверхности вирионов многих семейств вирусов (все РНК-содержащие оболочечные вирусы и аденовирусы) имеются пепломеры (выступы и шипы) длиной от 10 до 30 нм, которые принимают непосредственное участие в прикреплении вируса к клетке. Отщепление пепломеров с помощью протеолитических ферментов приводит к потере вирионами способности адсорбироваться на клетках. На поверхности вирионов, не имеющих пепломеров, находятся участки связывания с клеточной поверхностью, которые отличаются сложным строением и, вероятно, состоят из нескольких полипептидов.

Спектр чувствительности клеток к вирусам в значительной мере определяется наличием соответствующих рецепторов. Рецепторный барьер может быть преодолен при заражении инфекционной нуклеиновой кислотой.

На поверхности клетки может находиться большое количество различных видов рецепторов. Полагают, что каждая клетка может адсорбировать от десятков до нескольких тысяч вирионов. На поверхности одной клетки находится около 10000 рецепторов для полиовируса. Каждый рецептор специфичен для одного или нескольких вирусов, как родственных между собой, так и относящихся к различным таксономическим группам. Например, аденовирус типа 2 и вирус Коксаки ВЗ связываются с одними и теми же клеточными рецепторами.

У герпесвирусов прикрепительными белками могут служить гликопротеины оболочки, которые соединяются с некоторыми рецепторами клетки. Клеточным рецептором для многих ортомиксовирусов являются концевые сиаловые кислоты олигосахаридов, входящих в структуру гликопротеринов или гликолипидов, экспонированных на поверхности клетки. Рецепторами для многих риновирусов являются иммуноглобулины. У вируса ВИЧ в прикреплении первоначально участвуют молекулы СД4, расположенные на поверхности клеток, особенно макрофагов и Т-хелперных лимфоцитов. Подобные взаимодействия рецептор-лиганд свойственны другим лентивирусным инфекциям.

Рецепторы для одних вирусов имеются на клетках нескольких или многих тканей, тогда как для других вирусов они обнаружены на клетках одного вида тканей или в один из периодов онтогенеза (новорожденные или взрослые животные).
Рецепторы клеток способны к регенерации после удаления их протеолитическими ферментами.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Вирус (лат. virus - яд) - неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.

Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.

Вирус гепатита C

В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.

Ивановский Д.И.

  • Наличие наследственности и изменчивости
  • Способность к репродукции (воспроизведению себе подобных)

    Неживое (инертное) состояние

Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы - облигатные внутриклеточные паразиты.

У вирусов отсутствует обмен веществ с внешней средой (метаболизм).

Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.

У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.

Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни - безудержное размножение.

Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент - его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов - полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.

Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.

Строение вируса

Взаимодействие вируса с клеткой

Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.

Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код - она принимает его как свой собственный, а в результате синтезирует вирусные белки.

Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.

Вирус в клетке

Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.

Бактериофаги ("бактерия" + греч. phag(os) — пожирающий)

Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом - ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.

Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.

Строение бактериофага

Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.

Вирусные инфекции

Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.

Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.

Клетки вырабатывают защитный белок - интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).

Повышение температуры тела

Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах - клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.

Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.

Строение ВИЧ

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Размножение - присущее всему живому свойство воспроизведения себе подобных. Размножение обеспечивает преемственность и непрерывность жизни.

Размножение

Выделяют две основные формы размножения: бесполое и половое.

Бесполое размножение

Бесполое размножение осуществляется только одной родительской особью без участия половых клеток. Появление дочернего организма происходит из соматических клеток.

Важно заметить, что обычно потомству передаются только мутации, которые происходят в половых клетках (гаплоидных - n). Однако в случае бесполого размножения потомству передаются мутации в соматических клетках (диплоидных - 2n).

Делением материнской клетки на дочерние размножаются все бактерии и простейшие (амеба, эвглена зеленая, инфузории, водоросли).

Обратите внимание, что у ядерных организмов (эукариот) деление клетки подразумевает митоз, а у доядерных (прокариот) - простое бинарное деление (такая разница связана с отсутствием у прокариот ядра).

Митоз и простое бинарное деление

Часто бесполое размножение помогает быстро увеличить численность вида, оно активируется при благоприятных условиях среды. Осенью, при наступлении неблагоприятных условий становится активно половое размножение.

Споруляция подразумевает размножение с помощью специализированных клеток - спор. Эта форма размножения распространена у растений (водорослей, мхов, папоротников, хвощей и плаунов), грибов и некоторых простейших (споровики - малярийный плазмодий).

У одноклеточной зеленой водоросли - хламидомонады, споры имеют жгутики, вследствие чего называются зооспорами. У растений процесс образования спор происходит в обособленных мешковидных образованиях - спорангиях. Споры покрыты защитной оболочкой, служат для размножения и расселения растений и грибов.

Сорусы папортника

Помимо этого, споры грибов и простейших помогают им пережить влияние неблагоприятных факторов внешней среды, например пересыхание водоема. При наступлении благоприятных условий грибы и простейшие освобождаются от спор и продолжают рост и развитие.

Споры гриба

Вариантов вегетативного размножения у растений - масса, им посвящена отдельная статья. Растения размножают с помощью клубнелуковиц, клубней, корнеплодов, корневищ, усов, отводок, черенков, луковиц, делением кустов. Прививка - также является вариантом вегетативного размножения.

В случае вегетативного размножения дочерний организм представляет собой генетическую копию материнского организма, а также имеет шанс унаследовать мутации в соматических клетках.

Вегетативное размножение растений

У некоторых животных дочерние организмы могут появляться из группы клеток - прямо на теле родительской особи. В этом случае небольшой участок тела отделяется от родительского организма и развивается самостоятельно.

Почкованием размножаются многие кишечнополостные, например - пресноводный полип - гидра.

Вегетативное размножение растений

Некоторые живые существа в ходе эволюции развили поразительную способность к регенерации (лат. re - вновь и genus - поколение) - замещению утраченной части организма.

У молочной планарии способность к регенерации развита настолько, что, если разделить ее на несколько частей, то из каждой части восстановится полноценный организм.

Фрагментация у планарии

Является искусственным методом размножения, которым занимается отдельное направление биологии - биотехнология. Клоном называют дочернюю особь, идентичную в генетическом отношении родительской особи.

На настоящий момент бурно развивается направление выращивания искусственных органов, которые могут заменить "естественные" органы, утратившие вследствие болезней свои физиологические и анатомические свойства.

Искусственное ухо

Половое размножение

Осуществляется с помощью особых половых клеток (гамет). Имеет огромное эволюционное значение, так как в результате него образуются особи с новыми комбинациями генов, новыми признаками. Такие особи являются материалом для естественного отбора.

В результате бесполого размножения появляются генетические копии материнских организмов, которые содержат точно такой же набор генов в ДНК. В этом случае при изменении условий среды, если погибает одна особь, рискуют погибнуть все "генетические копии", так как они не обладают разнообразием, имеют одинаковый генотип, а значит одинаково не приспособлены.

Половое размножение в схожих условиях выигрывает значительно, так как создает генетическое разнообразие.

Спаривание дождевых червей

В ходе гаметогенеза у мужских и женских особей образуются половые клетки (гаметы): сперматозоиды (n) и яйцеклетки (n). При оплодотворении происходит их слияние, образуется зигота (2n). Далее следует эмбриональный период развития, который переходит в постэмбриональный.

У ряда организмов существуют свои особые варианты полового процесса. Таким является процесс конъюгации у инфузорий. Конъюгация (лат. conjugatio - соединение) сопровождается обменом ядер между клетками партнеров при их непосредственном контакте.

Важно заметить, что это пример полового процесса без размножения, так как увеличения числа особей не происходит. Однако две разошедшиеся клетки после конъюгации содержат новые комбинации генов, что в дальнейшем приведет к развитию новых признаков и появлению новых свойств у их потомства.

Конъюгация у инфузорий

Партеногенез (греч. παρθένος — дева, девица, девушка + γένεσις — возникновение) - одна из форм полового размножения, так называемое "девственное размножение".

При партеногенезе дочерний организм развивается из неоплодотворенной яйцеклетки. Несмотря на то, что в этом процессе не участвует мужская половая клетка, партеногенез относят к половому размножению, так как дочерний организм развивается из половой клетки - яйцеклетки.

Партеногенез

Партеногенез выполняет важную функцию регуляции соотношения полов у пчел: из неоплодотворенной яйцеклетки развиваются самцы, из оплодотворенной - самки. Партеногенез встречается также у муравьев, термитов, тлей.

Говоря о половом размножении нельзя не упомянуть интересное явление в природе - гермафродитизм. Это явление заключается в наличии у особи как мужских, так и женских половых органов (назван по имени мифического обоеполого существа - Гермафродита). Аналогичное явление у растений называется однодомностью: и мужские, и женские цветки в таком случае расположены на одном растении.

Очевидно, что особи гермафродиты вырабатывают два типа половых клеток: и сперматозоиды (мужские гаметы), и яйцеклетки (женские гаметы). Гермафродитизм чаще встречается у низших, более примитивных животных. Гермафродитами являются многие черви, моллюски, кишечнополостные.

Гермафродитизм

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Соотношение поверхность/объем у бактериальных клеток очень велико, что способствует быстрому поглощению питательных веществ из окружающей среды за счет диффузии и активного транспорта.

Поэтому в благоприятных условиях бактерии способны расти очень быстро. Рост бактериальных клеток в большой степени зависит от таких факторов среды, как температура, наличие питательных веществ, рН среды и концентрация ионов. Кроме того, облигатным аэробам необходим кислород, а облигатным анаэробам необходимо, чтобы его не было.

Достигнув определенных размеров, диктуемых соотношением объемов ядра и цитоплазмы, бактерии переходят к бесполому размножению путем простого деления, т. е. путем деления на две идентичные дочерние клетки.

Клеточному делению предшествует репликация ДНК, причем до тех пор, пока процесс репликации не завершится, мезосомы могут удерживать ДНК в определенном положении. Мезосомы могут прикрепляться и к новым перегородкам, образующимся между дочерними клетками, участвуя каким-то образом в синтезе материала клеточной стенки. У самых быстрорастущих бактерий деление происходит через каждые 20 мин.

Размножение бактерий. Рост бактерий. Бесполое размножение бактерий

Бесполое размножение бактерий (например, Е. coli) простым делением.

Половое размножение бактерий

В 1946 г. у бактерий было обнаружено половое размножение, но в самой примитивной форме. Гамет в данном случае не образуется, однако наиважнейшее событие полового размножения, а именно обмен генетическим материалом, происходит и в этом случае. Этот процесс называется генетической рекомбинацией. Генетическая рекомбинация впервые была обнаружена при изучении E.coli.

В норме при наличии в среде достаточного количества глюкозы и неорганических солей E.coli сама синтезирует все необходимые ей аминокислоты. В результате облучения этих бактерий у них иногда возникают случайные мутации. Были выделены два типа мутантов: один, не способный синтезировать биотин (витамин) и аминокислоту метионин, и другой — не способный синтезировать аминокислоты треонин и лейцин.

В среду, не содержавшую всех четырех факторов роста, помешали по 108 клеток каждого мутантного штамма. Теоретически клетки не должны были расти на этой среде. Однако все же было получено несколько сотен колоний (каждая колония возникает из одной исходной клетки), причем оказалось, что в таких клетках имеются все гены, необходимые для образования этих четырех факторов роста. Следовательно, в клетках каким-то образом произошел обмен генетической информацией, но выделить вещество, ответственное за этот процесс, в то время не удалось.

Половое размножение бактерий.

Конъюгация двух бактериальных клеток. Цифрами 1, 2 и 3 обозначены последовательные этапы переноса F-фактора.

В конце концов было установлено (при помощи электронного микроскопа), что клетки E.coli могут непосредственно контактировать друг с другом, т. е. у них может происходит конъюгация.

Пили — структуры полые и предполагается, что именно по этим пилям осуществляется перенос ДНК от донора (F+) к реципиенту (F-). Процесс этот показан на рисунке.

Обратите внимание на то, что донорная клетка сохраняет F-фактор, а реципиентная клетка его приобретает и становится F+. Процесс этот протекает медленно, и поэтому прежде чем перенос F-плазмиды завершится, клетка, бывшая изначально F-, успевает реплицироваться один или несколько раз, и в результате в популяции всегда сохраняются F-клетки.

F-фактор вызывает особенно большой интерес и потому, что время от времени, примерно в 1 случае из 100 000, он встраивается в молекулу основной ДНК клетки-хозяина. Тогда при конъюгации происходит перенос не только F-фактора, но и всей остальной ДНК. Этот процесс занимает примерно 90 мин, но клетки могут расходиться и раньше, чем произойдет полный обмен ДНК. Такие штаммы постоянно передают всю или большую часть своей ДНК другим клеткам. Эти штаммы называют Hfr-штаммами (от англ. Н — High — высокая, f — frequency — частота, г — recombination — рекомбинация), потому что донорная ДНК таких штаммов рекомбинирует с ДНК реципиента.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Kr0sH

1. Почкование, ферментация, спорообразование, деление
2. Дабы миновать защищенную стадию (наступает только при половом размножении), которая значительно увеличивает время "вынашивания"
3. Разделение растения на две и более дочерние части, либо отделение зачатков дочерней особи
4. Набор генов в бесполом растении взят только от матери => оно слабое (относительно потомка от двух "родителей"), менее устойчивое

Новые вопросы в Биология

Как животные могут негативно влиять на растения и как растения к этому воздействию приспосабливаются?

СРОЧНО!! ЛАБОРАТОРНАЯ ПО БИОЛОГИИ!! ДАЮ 30 БАЛЛОВ 1.Сделайте в быстром темпе несколько глотательных движений. Запишите в тетрадь свои наблюдения. Како … й отдел мозга отвечает за выполнение этой работы? 2 Примите позу Ромберга: одна ступня касается носком пятки другой ступни, расположенной впереди. Руки сложены в замок, локти сближены, глаза закрыты. Запишите в тетрадь свои наблюдения. Какой отдел мозга отвечает за выполнение этой работы? 3.Закройте глаза. Вытяните руку вперед. Указательным пальцем этой руки коснитесь кончика носа.Измините начальное положение руки, смените палец. Запишите в тетрадь свои наблюдения. Какой отдел мозга отвечает за выполнение этой работы? 3 Сделайте выводы о проделанной работе.

Вибрати усі твердження, що стосуються мохів:1)у циклі розвитку переважає гаметофіт2) для запліднення необхідна вода3)мохи не мають коренів, мрдуть мат … и ризоїди4)є тканини та органи​

Вариант Дать понятие: цевка, двойное дыхание, копчиковая железа. Опишите признаки птиц Решите тест: А1.В позвоночнике птиц: 1) 2 отдела; 2) 3 отдела; … 3) 4 отдела; 4) 5 отделов А2. У птиц различают следующие виды перьев: 1) контурные, пуховые, пух; 3) контурные, маховые, пуховые; 2) контурные, маховые, пух; 4) контурные, маховые 5)покровные, пуховые, пух. А3. Цевка - часть конечности птицы: 1) образована сросшимися костями стопы 2) образована сросшимися позвонками; 3) увеличивает длину шага у птиц; 4) служит для уменьшения массы тела птицы. А4. По сравнению с пресмыкающимися в головном мозге птиц лучше развиты: 1) передний мозг и мозжечок 2) передний, средний мозг и мозжечок 3) передний и средний мозг. А5. Челюсти птиц 1) Имеют зубы 2) Лишены зубов 4. Выпишите номера четырех верных утверждений о пресмыкающихся 1. Кровеносная система состоит из двух кругов кровообращения. 2. Температура тела не зависит от окружающей среды 3. Яйца рептилий покрыты плотной оболочкой, которая препятствует высыханию содержимого. 4. Сердце двухкамерное. 5. Кровь в организме смешанная. 6. Тело голое, слизистое. 7. Дыхание жаберное. 8. Головной мозг состоит из 5 отделов 5.Ответить по изображению (цифра – название кости)

ПОМОГИТЕ ПОЖАЛУЙСТА .1. Рассмотрите рисунок растительнойклетки (рис. 1). Какая структура клеткиобозначена на рисунке буквой А? Ответ. ________________ … _________________ 3.2. Каково значение этой структурыв жизнедеятельности клетки? Ответ. _________________________________ _______________________________________ Рис. 13.3. Наталья рассмотрела строение молодогокорня фасоли под микроскопом и сделало. К какому типу ткани относятсяизображённые на рис. 2 клетки, обозначенные цифрой 1? Ответ. ________________________________

Читайте также: