Векторы на основе вирусов животных и бактерий

Обновлено: 19.04.2024

Рекомбинантные живые векторные вакцины. Преимущества живых векторных вакцин.

В генетическом разнообразии вирусов в природе, особенно корона-, флави-и тогавирусов, важную роль играет рекомбинация. Она может происходить не только между близкородственными, но и отдаленно родственными вирусами.

Важным достижением технологии рекомбинантной ДНК явилось открытие возможности замены удаленного гена чужеродным геном. Этот метод использует вирусы как векторы для переноса генов протективных антигенов других вирусов. В геном авирулентного вируса вставляют ген интересующего вируса, кодирующий антиген, вызывающий протективный ответ в привитом организме.

Модифицированный таким образом авирулентный вирус используют как живую вирусную вакцину. Клетки, в которых векторный вирус реплицируется in vivo, экспрессируют чужеродный белок, вызывающий гуморальный и опосредованный клетками иммунный ответ на данный белок.

Вирусные химеры, как вакцины с репликативным механизмом одного вируса и протективными антигенами другого, являются быстрой формой векторных вакцин. Прообразом таких вакцин можно считать реассортантные вакцины.

живые векторные вакцины из герпесвирусов

Вирус осповакцины был одним из первых вирусов, на примере которого была показана возможность такой замены без потери жизнеспособности рекомби-нантного вируса с экспрессией белка, кодируемого чужеродным геном и индукцией иммунитета на этот белок. Подход к получению безопасной эффективной живой вакцины заключается в использовании стабильного вакцинного вирусного штамма для создания рекомбинантов, которые экспрессируют протективные антигены других вирусов, против которых желательно создать иммунитет. Члены семейства вирусов оспы оказались удобными для получения рекомбинантных гибридов, благодаря их большому геному, позволяющему удалять значительные участки ДНК без потери способности к репликации.

Гены, кодирующие различные антигены многих вирусов, были включены в геном вируса осповакцины. Прививка животных этими рекомбинантными векторными вакцинами каждый раз сопровождалась хорошим антительным ответом. Например, вирус осповакцины, использованный в качестве вектора вакцины против бешенства, будучи включенным в приманку для скармливания, защищал лис и хорьков от бешенства. Возможность включения нескольких генов, кодирующих соответствующие иммуногены, позволяет создать новый тип комбинированных (поливалентных) вакцин.

Участок генома вирусов оспы, кодирующий тимидинкиназу, не является геномом, функция которого жизненно необходима для размножения вируса, и его можно заменять на чужеродные ДНК.

Чужеродные белки, экспрессирующиеся рекомбинантным вирусом оспы, сохраняют свои антигенные свойства и способность формировать вирионную структуру.

Использование этого вируса в качестве вектора для вакцинации имеет ряд преимуществ: способность размножаться в клетках многих видов животных, экспрессировать несколько генов, индуцировать гуморальный и опосредованный клетками иммунитет, термостабильность, экономичность производства и легкость применения.

В качестве векторов для создания живых рекомбинантных вакцин могут быть использованы адено-, бакуло- и герпесвирусы. Они, как и вирусы оспы, имеют крупный геном, — по крайней мере с одной несущественной областью для репликации и несколькими участками, в которые могут быть встроены чужеродные гены и экспрессированы без потери инфекционности. В качестве векторов успешно используют вирусы оспы птиц.

Рекомбинантные векторные вакцины как бы сочетают в себе положительные качества живых и инактивированных вакцин. При репликации в организме рекомбинантного вируса с встроенным чужеродным геном, кодирующим синтез гликопротеина, который может быть экспрессирован на поверхности клеток и может индуцировать развитие как гуморального, так и клеточного иммунного ответа. Субъединичные вакцины могут индуцировать развитие только гуморального иммунного ответа.

Использование вируса осповакцины или других аттенуированных векторов для создания реплицирующихся субъединичных (компонентных) вакцин - новое перспективное направление молекулярной биологии и генной инженерии. В последнее время этот метод получил широкое применение в разработке нового поколения вакцин против различных вирусных заболеваний. Естественно, что становление принципиально нового направления создания вакцин сопряжено со многими трудностями. Однако на главный и принципиальный вопрос — способны ли рекомбинантные вакцины вызывать выраженный и длительный иммунитет — получен положительный ответ. Накопилось много данных о получении рекомбинантных вакцин, особенно на основе вируса осповакцины, содержащих гены различных вирусов, об их антигенной и иммуногенной активности при испытании в лабораторных и практических условиях.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Векторы. Векторы на основе РНК-содержащих вирусов. Векторы на основе ДНК-геномных вирусов. Невирусные векторы.

Как было указано выше, для переноса соответствующих генов в клетку используют различные векторы [от лат. vector, переносчик]. Основная проблема при их разработке — преодоление иммунологического барьера реципиента, ограждающего организм от различных внешних воздействий, в том числе и от внедрения чужеродной ДНК в геном клеток. В этом плане особый интерес представляют вирусы, так как из всех известных агентов лишь они способны более или менее успешно интегрировать генетический материал в геном клеток человека. Поэтому все усилия специалистов генной терапии на настоящий момент сконцентрированы в области генной инженерии вирусов, применяемых в качестве векторов, доставляющих терапевтические гены в клетки организма больного.

Векторы на основе РНК-содержащих вирусов

РНК-геномные вирусы легко интегрируют в геном клетки-хозяина, тем самым обеспечивая долговременную экспрессию необходимого гена. Для создания генно-терапевтических векторов наиболее перспективны ретровирусы. С их участием проведено около 60% всех клинических попыток генной терапии.

Векторы. Векторы на основе РНК-содержащих вирусов

Ретровирусы относительно безвредны для человека, исключая, конечно, ВИЧ и Т-лимфотропные вирусы человека. Наиболее часто в качестве вектора применяют вирус лейкемии мышей. При разработке векторов из их состава полностью исключают гены, кодирующие синтез продуктов, обеспечивающих репродукцию. Кодирующая ёмкость трансгенов в составе ретрови-русных векторов не превышает 8000 пар оснований нуклеиновых кислот.

Основные проблемы применения РНК-вирусных векторов — эффективная доставка генетического материала в клетки, поддержка долговременной экспрессии и трансдукция неделящих-ся клеток (большинство РНК-векторов неспособно к эффективному переносу трансгенов в покоящиеся клетки). Однако неспособность ретровирусов к трансдукции покоящихся клеток в конкретной ситуации может оказаться и выгодной, например, в генной терапии глиобластом (злокачественные опухоли мозга). Идея их применения заключается в избирательной трансдукции делящихся клеток в очаге поражения — опухолевых клеток и клеток сосудов; нервные клетки не делятся и потому не служат мишенью ретровирусных векторов.

Векторы на основе ДНК-геномных вирусов

Векторы, созданные на основе ДНК-вирусов обладают большими размерами по сравнению с РНК-геномными вирусами и поэтому могут вмещать фрагменты ДНК (трансгены) длиной до 35 000 пар оснований.

• Аденовирусные векторы. На основе аденовирусов создают векторы для генной терапии in situ муковисцидоза и злокачественных опухолей. Аденовирусные векторы способны к высокоэффективной трансдукции большого спектра клеточных типов человека, включая неделящиеся клетки. Особое внимание заслуживают векторы на основе аденоасеоциированного вируса. Аденоассоциированный вирус — непатогенный вирус, широко распространённый у человека (AT к его Аг обнаруживают у 80% людей). Вирус тропен к определённой части генома— он интегрируется преимущественно с коротким плечом хромосомы 19. В экспериментах показана эффективность векторов, созданных на основе аденоассоциированного вируса, в трансдукции клеток мозга, скелетных мышц и печени.

Векторы на основе ДНК-геномных вирусов. Невирусные векторы

• Другие ДНК-геномные вирусы. Среди остальных ДНК-содержащих вирусов относительно часто применяют вирус простого герпеса (ВПГ), проявляющий тропность к нервной ткани (соответственно используют для трансдукции клеток мозга).

Невирусные векторы

Невирусные векторы (молекулы ДНК со свойствами транспозонов или вставочных последовательностей) менее распространены, чем векторы на основе вирусов. Тем не менее не вирусные векторы обладают многими преимуществами, такими как безопасность и простота конструирования. Путём конструирования синтетической системы по доставке генов внутрь клетки можно избежать опасности продуцирования рекомбинантного вируса или других токсических эффектов.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Вирусные векторы для переноса ДНК в клетки. Примеры использования

Идеальный вектор для генотерапии должен быть безопасным, легко изготавливаемым, легко вносимым в подходящую целевую ткань, при этом он должен экспрессировать нужный ген пожизненно. В настоящее время нет ни одного известного вирусного или невирусного вектора, удовлетворяющего всем этим критериям.

На самом деле, вероятно, нет единственного вектора, удовлетворительного во всех отношениях для всех типов генотерапии, и потребуется набор векторов. Здесь мы кратко рассмотрим три широко используемых класса вирусных векторов, производных от ретровирусов, аденовирусов и адено-ассоциированных вирусов. Основное преимущество вирусных векторов — то, что они способны проникнуть фактически в каждую клетку в целевой популяции.

Один из наиболее широко используемых классов векторов — производные от ретровирусов, простых РНК-вирусов всего с тремя структурными генами, которые могут быть удалены и заменены нужным геном. Текущее поколение ретровирусных векторов создано так, чтобы лишить их способности к репликации.

вирусный вектор

Другие их достоинства: нетоксичны в клетке; в геном хозяина внедряется (с передаваемым геном) только небольшое количество копий вирусной ДНК; встроенная ДНК стабильна; ретровирусные векторы могут встраивать вплоть до 8 килобаз дополнительной ДНК, что достаточно для многих передаваемых генов.

Основное ограничение большинства ретровирусных векторов в том, что для интеграции вируса в ДНК хозяина целевая клетка должна делиться, а это ограничивает использование таких векторов для неделящихся клеток, например нейронов. Тем не менее ретровирусы одного класса — лентивирусы, включающие ВИЧ, способны встраивать свою ДНК во множество медленно делящихся и даже неделящихся клеток, включая нейроны. Эти векторы могут оказаться пригодными для лечения неврологических заболеваний.

Адено-ассоциированные вирусы имеют большое преимущество — они не имеют никаких неблагоприятных эффектов у больных и широко распространены в популяциях человека. Кроме того, они заражают как делящиеся, так и неделящиеся клетки и могут существовать в виде эписом или стабильно интегрироваться в хромосому хозяина.

Их основной недостаток состоит в том, что имеющиеся на настоящий момент адено-ассоциированные вирусные векторы могут встраивать не более 5 килобаз дополнительной ДНК.

Аденовирусные векторы имеют свои преимущества — их можно получать в высоком титре; они заражают множество типов клеток, как делящихся, так и неделящихся; они могут встраивать в себя от 30 до 35 килобаз ДНК. Тем не менее, помимо других ограничений, их применение недавно было связано по крайней мере с одной смертью при испытании генотерапии вследствие развития сильной иммунной реакции. Следовательно, возможность их использования в целях генотерапии в настоящее время тщательно проверяется.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Рекомбинантные живые векторные вакцины. Преимущества живых векторных вакцин.

В генетическом разнообразии вирусов в природе, особенно корона-, флави-и тогавирусов, важную роль играет рекомбинация. Она может происходить не только между близкородственными, но и отдаленно родственными вирусами.

Важным достижением технологии рекомбинантной ДНК явилось открытие возможности замены удаленного гена чужеродным геном. Этот метод использует вирусы как векторы для переноса генов протективных антигенов других вирусов. В геном авирулентного вируса вставляют ген интересующего вируса, кодирующий антиген, вызывающий протективный ответ в привитом организме.

Модифицированный таким образом авирулентный вирус используют как живую вирусную вакцину. Клетки, в которых векторный вирус реплицируется in vivo, экспрессируют чужеродный белок, вызывающий гуморальный и опосредованный клетками иммунный ответ на данный белок.

Вирусные химеры, как вакцины с репликативным механизмом одного вируса и протективными антигенами другого, являются быстрой формой векторных вакцин. Прообразом таких вакцин можно считать реассортантные вакцины.

живые векторные вакцины из герпесвирусов

Вирус осповакцины был одним из первых вирусов, на примере которого была показана возможность такой замены без потери жизнеспособности рекомби-нантного вируса с экспрессией белка, кодируемого чужеродным геном и индукцией иммунитета на этот белок. Подход к получению безопасной эффективной живой вакцины заключается в использовании стабильного вакцинного вирусного штамма для создания рекомбинантов, которые экспрессируют протективные антигены других вирусов, против которых желательно создать иммунитет. Члены семейства вирусов оспы оказались удобными для получения рекомбинантных гибридов, благодаря их большому геному, позволяющему удалять значительные участки ДНК без потери способности к репликации.

Гены, кодирующие различные антигены многих вирусов, были включены в геном вируса осповакцины. Прививка животных этими рекомбинантными векторными вакцинами каждый раз сопровождалась хорошим антительным ответом. Например, вирус осповакцины, использованный в качестве вектора вакцины против бешенства, будучи включенным в приманку для скармливания, защищал лис и хорьков от бешенства. Возможность включения нескольких генов, кодирующих соответствующие иммуногены, позволяет создать новый тип комбинированных (поливалентных) вакцин.

Участок генома вирусов оспы, кодирующий тимидинкиназу, не является геномом, функция которого жизненно необходима для размножения вируса, и его можно заменять на чужеродные ДНК.

Чужеродные белки, экспрессирующиеся рекомбинантным вирусом оспы, сохраняют свои антигенные свойства и способность формировать вирионную структуру.

Использование этого вируса в качестве вектора для вакцинации имеет ряд преимуществ: способность размножаться в клетках многих видов животных, экспрессировать несколько генов, индуцировать гуморальный и опосредованный клетками иммунитет, термостабильность, экономичность производства и легкость применения.

В качестве векторов для создания живых рекомбинантных вакцин могут быть использованы адено-, бакуло- и герпесвирусы. Они, как и вирусы оспы, имеют крупный геном, — по крайней мере с одной несущественной областью для репликации и несколькими участками, в которые могут быть встроены чужеродные гены и экспрессированы без потери инфекционности. В качестве векторов успешно используют вирусы оспы птиц.

Рекомбинантные векторные вакцины как бы сочетают в себе положительные качества живых и инактивированных вакцин. При репликации в организме рекомбинантного вируса с встроенным чужеродным геном, кодирующим синтез гликопротеина, который может быть экспрессирован на поверхности клеток и может индуцировать развитие как гуморального, так и клеточного иммунного ответа. Субъединичные вакцины могут индуцировать развитие только гуморального иммунного ответа.

Использование вируса осповакцины или других аттенуированных векторов для создания реплицирующихся субъединичных (компонентных) вакцин - новое перспективное направление молекулярной биологии и генной инженерии. В последнее время этот метод получил широкое применение в разработке нового поколения вакцин против различных вирусных заболеваний. Естественно, что становление принципиально нового направления создания вакцин сопряжено со многими трудностями. Однако на главный и принципиальный вопрос — способны ли рекомбинантные вакцины вызывать выраженный и длительный иммунитет — получен положительный ответ. Накопилось много данных о получении рекомбинантных вакцин, особенно на основе вируса осповакцины, содержащих гены различных вирусов, об их антигенной и иммуногенной активности при испытании в лабораторных и практических условиях.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Вирусные векторы для переноса ДНК в клетки. Примеры использования

Идеальный вектор для генотерапии должен быть безопасным, легко изготавливаемым, легко вносимым в подходящую целевую ткань, при этом он должен экспрессировать нужный ген пожизненно. В настоящее время нет ни одного известного вирусного или невирусного вектора, удовлетворяющего всем этим критериям.

На самом деле, вероятно, нет единственного вектора, удовлетворительного во всех отношениях для всех типов генотерапии, и потребуется набор векторов. Здесь мы кратко рассмотрим три широко используемых класса вирусных векторов, производных от ретровирусов, аденовирусов и адено-ассоциированных вирусов. Основное преимущество вирусных векторов — то, что они способны проникнуть фактически в каждую клетку в целевой популяции.

Один из наиболее широко используемых классов векторов — производные от ретровирусов, простых РНК-вирусов всего с тремя структурными генами, которые могут быть удалены и заменены нужным геном. Текущее поколение ретровирусных векторов создано так, чтобы лишить их способности к репликации.

вирусный вектор

Другие их достоинства: нетоксичны в клетке; в геном хозяина внедряется (с передаваемым геном) только небольшое количество копий вирусной ДНК; встроенная ДНК стабильна; ретровирусные векторы могут встраивать вплоть до 8 килобаз дополнительной ДНК, что достаточно для многих передаваемых генов.

Основное ограничение большинства ретровирусных векторов в том, что для интеграции вируса в ДНК хозяина целевая клетка должна делиться, а это ограничивает использование таких векторов для неделящихся клеток, например нейронов. Тем не менее ретровирусы одного класса — лентивирусы, включающие ВИЧ, способны встраивать свою ДНК во множество медленно делящихся и даже неделящихся клеток, включая нейроны. Эти векторы могут оказаться пригодными для лечения неврологических заболеваний.

Адено-ассоциированные вирусы имеют большое преимущество — они не имеют никаких неблагоприятных эффектов у больных и широко распространены в популяциях человека. Кроме того, они заражают как делящиеся, так и неделящиеся клетки и могут существовать в виде эписом или стабильно интегрироваться в хромосому хозяина.

Их основной недостаток состоит в том, что имеющиеся на настоящий момент адено-ассоциированные вирусные векторы могут встраивать не более 5 килобаз дополнительной ДНК.

Аденовирусные векторы имеют свои преимущества — их можно получать в высоком титре; они заражают множество типов клеток, как делящихся, так и неделящихся; они могут встраивать в себя от 30 до 35 килобаз ДНК. Тем не менее, помимо других ограничений, их применение недавно было связано по крайней мере с одной смертью при испытании генотерапии вследствие развития сильной иммунной реакции. Следовательно, возможность их использования в целях генотерапии в настоящее время тщательно проверяется.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: