Вирус эпштейн барр рак шейки матки

Обновлено: 18.04.2024


Обзор

Автор
Редактор

Вместо предисловия к биографии нашего героя я хочу сделать признание. Я, конечно, стараюсь быть историком науки, беспристрастно анализировать всё. Но для меня все Нобелевские премии по физике, химии и медицине всегда будут делиться на две неравные части: премии до 2006 года и премии с 2006 года включительно. Нет, конечно, можно пофантазировать о том, что я доживу до 2110 года и вот тогда эти части будут равными. Но, положа руку на сердце, — вряд ли. Тем не менее деление это именно таково.

Наш герой родился в 1936 году в Третьем рейхе, и его детские воспоминания были воспоминаниями о войне. Конечно, в начале войны положение Харальда было комфортным, и ребенок мог развивать свой интерес к живой природе, изучая местных животных и растения, однако с 1943 года его родной Гельзенкирхен начали активно бомбить. По его собственным словам [1], это сильно повредило образованию, и когда он всё-таки поступил в гимназию, пробелы начали ощущаться особенно сильно. Закончил школу он тоже поздно — в 1955 году, в 19 лет, уже в Северной Германии, куда его родители переехали в 1950 году.

Но несмотря на то, что герой нашей статьи твердо решил посвятить свою жизнь фундаментальной медицинской науке, он счел необходимым получить статус MD — то есть практикующего врача. В связи с этим его ждали одновременно в Университете Гамбурга и в Дюссельдорфской медицинской академии.

Цур Хаузен в лаборатории

Рисунок 1. Молодой цур Хаузен с лаборантками в лаборатории Хенле (Филадельфия, 1967 г.)

Конец 1960 года. Цур Хаузен теперь уже настоящий доктор, однако он решает быть честным перед собой — и проходит еще два года интернатуры. Хирургия, внутренние болезни и — в самом конце — акушерство и гинекология. Это ему понравилось больше всего. Видимо, уже тогда он обратил внимание на папиллому и рак шейки матки.

Окончив интернатуру, молодой врач наконец-то отправился заниматься наукой — на кафедру медицинской микробиологии и иммунологии Университета Дюссельдорфа, созданного на основе местной медицинской академии.

Предварительно женившись в 1964 году и родив сына (не сам — жена рожала, конечно, и спешка была, в общем, резонной — во время интенсивной работы постдоком не до этого), в конце 1965 года цур Хаузен переехал в Филадельфию и начал работу в лаборатории Вернера Хенле (рис. 1), где изучали открытый незадолго до этого вирус Эпштейна-Барр* (рис. 2а).

Лаборатория занималась разработкой тестов на этот вирус и поиском связи его с другими заболеваниями. Цур Хаузена засадили за работу, хотя, судя по его автобиографии, работать с этим вирусом ему не очень нравилось. Ему даже разрешили поработать с другим вирусом — аденовирусом 12 типа. Но, несмотря на это, именно наш герой продемонстрировал Хенле связь вируса со злокачественной лимфомой Бёркитта (рис. 2б).

Вирус Эпштейна-Барр, лимфома Бёркитта и вирус папилломы человека

Единственным плюсом работы в Америке цур Хаузен называет освоение новых методов работы. Но как только в 1968 году он получил приглашение от Эберхарда Беккера, который возглавил только что основанный в Университете Вюрцбурга Институт вирусологии, с предложением создать свою собственную исследовательскую группу, Харальд сразу же (ну ладно, не сразу — в начале 1969 года) вернулся в Германию.

Как ни странно, но, создав свою группу, цур Хаузен продолжил изучение вируса Эпштейна-Барр. Видимо, всё дело было в том, что теперь никто не указывал ему, что делать, и не приходилось сдерживать в себе желание сказать, куда нужно указующему пойти.

И результат был потрясающий — уже к концу года он продемонстрировал, что во всех вариантах клеточных линий лимфомы Бёркитта содержится вирусная ДНК. ДНК вируса Эпштейна-Барр.

Для дальнейших своих экспериментов с поиском вирусов в раковых клетках цур Хаузен использовал технику гибридизации вирусной ДНК in situ. Вот в чём ее суть: РНК-зонд (транскрипт вирусной ДНК), меченный флуоресцентной или радиоактивной меткой, добавляют в препарат биопсии опухолевой ткани. РНК образует прочный комплекс (как говорят — гибридизуется) с вирусной ДНК, содержащейся в ткани. Образовавшийся комплекс легко обнаружить флуоресцентным микроскопом или методом авторадиографии.

В начале 1970-х цур Хаузен вспомнил о своей акушерской юности и о цервикальном раке, с которым он сталкивался как врач. И здесь он тоже решил поискать вирусы герпеса — раз уж повезло с одним раком, можно поискать вирусы и в другом. Однако вирус не находился.

Как акушер, Харальд знал, что во влагалище и в шейке матки изменения вызывает и другой вирус — вирус папилломы человека (ВПЧ, HPV). Да, он считался безобидным. Да, он вызывает только похожие на бородавки образования (кондиломы). Но вдруг?

Первый эксперимент прошел в 1974 году — и неудача. Никакого вируса в клетках цур Хаузен не увидел, ничего не засияло в поле зрения микроскопа. Однако Харальд, во-первых, не отчаялся, а во-вторых, опубликовал результаты своей неудачи, предположив, что есть несколько разновидностей вируса, и что РНК одной разновидности не гибридизуется с ДНК другой.

Параллельно с открытиями приходит и новая ответственность. Раз Харальд цур Хаузен — человек, сказавший новое слово в исследовании рака, то ему и возглавлять Германский Центр по исследованию рака. В 1983 году цур Хаузен принимает новое учреждение под свое крыло и работает в нём ровно два десятка лет. В 2003 году он выходит в отставку, оставив себе свою лабораторию и должность главного редактора журнала International Journal of Cancer, на которую заступил тремя годами ранее.

Нобелевская премия пришла в 2008 году [3]. Наш герой получил половину суммы, вторую разделили между собой Люк Монтанье и Франсуаза Барре-Синусси — первооткрыватели вируса иммунодефицита человека (рис. 3). Так Нобелевский комитет в XXI веке наградил одни из самых важных достижений вирусологии века двадцатого. Любопытно, что каждому из лауреатов пришлось ждать своей премии почти четверть века. Впрочем, для нынешних премий это далеко не рекорд. Вспомним Джона Гёрдона [4], ждавшего награды почти полвека или Петра Капицу, потроллившего Нобелевский комитет началом своей нобелевской лекции, заявив, что свои работы по открытию сверхтекучего гелия он за сорок лет забыл, так что слушайте, пожалуйста, про термоядерные реакции.

Вручение награды цур Хаузену

Рисунок 3. Нобелевские лауреаты 2008 года. Слева — Коллективный фотопортрет, цур Хаузен — второй справа. Справа — Момент вручения награды цур Хаузену.

Впрочем, почти 80-летний лауреат и ныне активен*. Он пользуется своим новым статусом для того, чтобы привлекать средства в исследования рака, чтобы читать популярные лекции и заниматься просвещением. Вполне достойный выбор для вершины карьеры ученого.


Обзор

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Исследования в области происхождения злокачественных опухолей, ежегодно уносящих миллионы человеческих жизней, ведутся с XIX века. Работая в области молекулярной вирусологии, Вармус совместно с Дж. М. Бишопом в исследованиях 1970-х гг. сделали открытие, которое по-новому осветило долго остававшуюся дискуссионной проблему этиологии опухолей у человека и животных. Согласно полученным результатам, неконтролируемый рост клеток, образующих опухоль, вызывается не только проникающим в клетку извне онковирусом, но и внутренними процессами в самой клетке. Вармус доказал, что нормальные гены роста клетки вследствие случайных спонтанных мутаций под воздействием химических канцерогенов или, порой, процесса старения могут изменять свою молекулярную структуру и таким образом превращаться в протовирусы онкогенной природы. За открытие клеточного происхождения онкогенных протовирусов Вармус совместно с Дж. М. Бишопом в 1989 г. были удостоены Нобелевской премии по физиологии и медицине [1].

Один из самых распространённых вирусов в человеческой популяции — вирус Эпштейна-Барр (рис. 1) — был открыт и описан в 1964 году двумя английскими вирусологами: Майклом Эпштейном и Ивонной Барр. Вирус Эпштейна-Барр (ВЭБ) — член семейства герпесвирусов [6, 7]. В инфицированных клетках вирусная ДНК, как правило, не встроена в клеточный геном, а находится в ядре в виде замкнутого кольца (эписомы). Биологическое значение интеграции ВЭБ в геном клетки остается неясным. Высказываются предположения, что эписомная ДНК необходима для реализации полноценной репликации ВЭБ, завершающейся формированием вирусных частиц [8].

Структура вириона вируса Эпштейна-Барр

В отличие от многих других герпесвирусов, вирус Эпштейна-Барр поражает в первую очередь эпителиальные клетки ротовой полости, глотки, миндалин. Здесь он размножается наиболее активно, и поэтому главным путём заражения вирусом являются поцелуи (вот и приехали). Наибольшее количество вирусных частиц находится в клетках эпителия около слюнных желез, и со слюной выделяется большое количество их. Не удивительно, что инфекционный мононуклеоз — самое распространённое заболевание, вызываемое вирусом Эпштейна-Барр, — называют ещё болезнью поцелуев [9].

После первой встречи человека с ВЭБ вирус в незначительном количестве сохраняется в организме хозяина в течение всей жизни. Однако если любой элемент иммунного ответа нарушен, даже незначительное количество ВЭБ-инфицированных клеток может преумножиться колоссально [12].

Инфицированные В-клетки могут значительное время находиться в миндалинах, что позволяет вирусу выделяться во внешнюю среду со слюной. С зараженными клетками ВЭБ распространяется по другим органам. В пораженных вирусом клетках возможно два вида развития: литический, приводящий к разрушению клетки-хозяина, и латентный (клетка заражена, но ничего не выдает нахождения вируса), когда число вирусных копий небольшое и клетка не разрушается. ВЭБ может длительно находиться в В-лимфоцитах, эпителии носоглотки и слюнных железах. Кроме того, он способен проникать и в другие клетки: Т-лимфоциты, NK-клетки, макрофаги, нейтрофилы, эпителиоциты сосудов (рис. 2а, 2б) [13].

Проникновение ВЭБ в организм

Злокачественные лимфомы (например, увеличение лимфоузлов), согласно данным Международного агентства по изучению рака, составляют 3–4% среди всех регистрируемых в мире злокачественных новообразований [14]. Лимфомы делят на две основные группы: лимфома Ходжкина (20–30 % всех лимфом) и неходжкинские лимфомы (около 70%) [14, 15].

Неходжикинские лимфомы — это совокупность новообразований, в возникновении которых принимают участие различные агенты [18]. Первая группа — это вирусы, трансформирующие лимфоциты и другие клетки (ВЭБ, HHV-8). Вторая группа представлена факторами различной природы, вызывающими иммунодефицитные состояния. К таким факторам в первую очередь относится ВИЧ (вирус иммунодефицита человека), вызывающий у инфицированного лица подавление иммунитета в результате истощения пула Т-лимфоцитов CD4+ и возникновение СПИДа. В третью группу входят некоторые инфекции, (например, H. pylori), которые увеличивают риск возникновения лимфом на фоне вызываемой ими хронической стимуляции иммунной системы и постоянной активации лимфоцитов [17].

Исследования последних лет свидетельствуют о том, что в патогенезе ВЭБ-ассоциированных патологий чрезвычайно важную роль играет вредный LMP1 — латентный мембранный белок 1, кодируемый одноименным геном (LMP1). Он обладает свойствами онкобелка и функционирует как постоянно активный псевдорецептор. Он способен изменять В-лимфоциты человека [19].

Есть предположение, что аминокислотные замены, накапливающиеся в LMP1, по-видимому, также вносят свой вклад в возникновение опухолей. Механизм этого процесса окончательно не установлен, но предполагается, что усиленный трансформирующий эффект мутированных LMP1 может представлять важную составляющую этого процесса. При этом показано, что различия в последовательности гена LMP1 могут определять агрессивный географически локализованный генотип ВЭБ [21].

Из известных механизмов действия LMP-2 (второй из братьев семейства LMP), расположенного на противоположном конце линейного генома, упоминается лишь способность этих белков совместно повышать сигнальную трансдукцию в ВЭБ (+) клетках [19].

По данным Харальда цур Хаузена, связь между вирусом и раковым заболеванием считается установленной при определении следующих критериев:

  1. эпидемиологические доказательства того, что вирусная инфекция является фактором риска для развития специфической опухоли;
  2. присутствие и сохранение генома вируса в клетках опухоли;
  3. стимуляция пролиферации клеток после введения генома (или его части) вируса в ткани культуры клеток;
  4. демонстрация того, что геном возбудителя индуцирует пролиферацию и злокачественный фенотип опухоли [19].

Однако канцерогенность ВЭБ далеко не однозначна. Несмотря на то, что кодируемые вирусом продукты способны вызывать пролиферацию инфицированных клеток, ведущую к возникновению лимфом у больных с иммунодефицитом, эти клинически агрессивные опухоли довольно часто поликлональны и подвергаются регрессии при восстановлении иммунного ответа на ВЭБ. Такие опухоли как лимфома Беркитта (ЛБ) и лимфома Ходжкина (ЛХ) встречаются не только в ВЭБ-ассоциированных, но и в ВЭБ-неассоциированных вариантах, что говорит о том, что патогенез этих новообразований связан не только с ВЭБ. Кроме того, злокачественные клетки больных ЛБ и ЛХ отличаются фенотипически от клеток ЛКЛ, полученных под воздействием ВЭБ in vitro, и не экспрессируют ряд белков, необходимых для трансформирующего роста. Эти находки позволяют предположить, что опухолевые клетки могут возникать и под воздействием факторов невирусного происхождения, а также зависеть от различных усиливающих рост клеток стимулов [17].

Лабораторная диагностика ВЭБ-инфекции базируется на цитологическом исследовании крови или костного мозга, серологических исследованиях и ПЦР. С помощью метода ПЦР можно определить ДНК вируса в плазме до клинических проявлений болезни, а репликация вируса в организме является показанием к противовирусной терапии и критерием эффективности проведенного лечения. Материалом для исследования служат слюна или рото- и носоглоточная слизь, соскоб эпителиальных клеток урогенитального тракта, кровь, спинномозговая жидкость, ткани опухоли и костный мозг. Как у больных ВЭБ, так и у носителей может быть получен положительный результат в ПЦР. Поэтому для их дифференцировки проводится количественный ПЦР-анализ для определения количества копий вирусного генома. У маленьких детей (до 1–3-х лет) по причине недостаточно сформированного иммунитета диагностика по антителам затруднительна, поэтому в данной группе пациентов в помощь приходит именно ПЦР. Однако в силу того, что ПЦР-анализ информативен только при размножении (репликации) вируса, то существует и определенный процент ложноотрицательных результатов (до 30%), связанный именно с отсутствием репликации в момент исследования. При этом важно сопоставление результатов клинических, серологических и молекулярных обследований в определении ВЭБ-инфекции, как причины имеющегося заболевания [1].

Специфическая профилактика (вакцинация) против ВЭБ не разработана, но проводятся клинические испытания. Основной проблемой при разработке вакцины является большое отличие в белковом составе вируса на разных фазах его существования. Впрочем, в настоящее время разрабатывается вакцина, которая содержит рекомбинантный поверхностный антиген gp350. После вакцинации первичная инфекция протекает субклинически, но собственно инфицирование человека не предупреждается. Кроме того, вырабатывающиеся нейтрализующие антитела не влияют на течение различных форм латентной инфекции, в том числе опухолей. Профилактические меры сводятся к укреплению иммунитета, закаливанию детей, мерам предосторожности при появлении больного в окружении, соблюдение правил личной гигиены.

Заключение

Широкое распространение ВЭБ с выраженным трансформирующим потенциалом среди населения планеты и редкого возникновения в инфицированной популяции связанных с этим вирусом опухолей с преимущественной их локализацией в определенных географических регионах позволяет сделать важный вывод. Подобно большинству опухолей иной вирусной природы, в патогенезе ВЭБ-ассоциированных новообразований важную роль играют дополнительные факторы, и одного ВЭБ недостаточно для возникновения опухоли. ВЭБ лишь инициирует пролиферацию инфицированных им клеток, а последующие события влияют на гистопатологический спектр возникающих неоплазий. Одним из важнейших факторов, в значительной степени определяющих возникновение ВЭБ-ассоциированных опухолей, служит выраженная иммуносупрессия (врожденная, ятрогенная или индуцированная любой вирусной инфекцией, и в первую очередь ВИЧ), приводящая к утрате функции иммунного распознавания клеток, инфицированных ВЭБ.

Таким образом, несмотря на многолетнее изучение связи ВЭБ с опухолями человека, вопрос о роли вируса в их возникновении до конца не изучен. Раскрытие механизма злокачественной трансформации вирусом, персистирующим в латентном состоянии более чем у 90% населения планеты, — задача чрезвычайно сложная. Однако технические достижения последних лет, существенно повысившие специфичность исследований, позволяют надеяться, что детали ВЭБ-ассоциированного канцерогенеза будут выяснены.



Инфекция, вызванная онкогенными вирусами, является причиной 15,4% заболеваний раком по всей земле. Первый онкогенный вирус, который был идентифицирован — это куриный вирус саркомы Рауса в 1911 году. Десятилетиями позже были обнаружены серии других онкогенных вирусов, в том числе вирус папилломы Шопа (вирус папилломы кроличьего хвоста), вирус опухоли молочной железы мыши, аденовирус, вирус SV40 (обезьяний вирус sv40). Теория опосредованного вирусом онкогенеза в итоге была экспериментально продемонстрирована в 1976 году Гарольдом Вармусом и Майклом Бишопом путем превращения инфицированных клеток в опухолевые вирусом саркомы (ген v-src вызывает образование опухоли после захвата протоонкогена человеческой клетки в результате трансдукции).

Несмотря на то, что онкогенные вирусы нашли в исследованиях онкогенной активности животных клеток, они были не в состоянии преобразовать человеческие клетки. Теория вирусного онкогенеза в человеческой клетке оставалась спорной до 1965 года, когда вирус Эпштейн-Барр (EBV) был обнаружен в клетках лимфомы Беркитта. В ходе последующих исследований, в том числе выделении Т-лимфотропного вируса человека (HTLV) из клеток Т-клеточной лимфомы и выявлении роли папилломовирусов человека с высокой онкогенной активностью в развитии рака шейки матки, был определен путь для понятия человеческих онкогенных вирусов. Обнаружение связи между герпес-вирусом и саркомой Капоши (KSHV) и лимфомой и между полиомавирусом клеток Меркеля (MCV) и карциномой клеток Меркеля (MCC) подчеркнуло возможность открытия еще большего количества онкогенных вирусов с помощью современных технологий. Далее каждый вирус будет рассмотрен отдельно.

Вирус Эпштейн-Барр

Вирус Эпштейн-Барр (ВЭБ, EBV) — ДНК-содержащий вирус, который преимущественно поражает B-лимфоциты, также является митогеном для них; вызывает лимфопролиферативные болезни (лимфома Беркитта, носоглоточная карцинома, NK-клеточная лейкемия, лимфома Ходжкина и т.д.), а также инфекционный мононуклеоз. Вирионы вируса были обнаружены при электронной микроскопии биоптата лимфомы Беркитта в начале 1964 года Энтони Эпштейном и Ивонной Барр.

Строение. ВЭБ имеет вирусный капсидный антиген (VCA), ядерные антигены-EBNAs 1, 2, 3, 3a, 3b, 3c; латентные мембранные протеины (LMPs) 1, 2 и две маленькие Эпштейна-Барр-кодируемые РНК (EBER) молекулы — EBER1 и EBER2. EBNAs и LMPs являются ДНК-связывающими белками, считающимися необходимыми для развития инфекции и фиксации.

Промотор репликации плазмидного вектора показан оранжевым. Короткие толстые зеленые стрелки представляют экзоны, кодирующие латентные белки: (EBNAs 1, 2, 3A, 3B and 3C, and EBNA‑LP, LMPs 1, 2A and 2B, BHRF1,BARF1). Короткие голубые стрелки сверху представляют наиболее транскрибириуемые полиаденилированные ВЭБ-кодируемые РНК (EBER1, EBER2). Средняя длинная зеленая линия представляет транскрипцию ВЭБ при 3-ем типе латентности, в которой белки EBNA транскрибированы с промотора Ср или Wp. Различные EBNA кодированы индивидуальными мРНК, которые сгенерированы различным сплайсингом одного и того же длинного первичного транскрипта. Внутренняя красная линия представляет транскрипт EBNA1, который берет начало от промотора Qp при 1 и 2 типе латентности.

  • необходим для трансформации В-лимфоцитов;
  • функционирует как конститутивный активатор рецептора ФНО и имеет сходство с CD-40 рецептором;
  • активирует сигнальные пути, которые делают вклад в онкогенный эффект.

В зависимости от набора экспрессируемых вирусных генов в пораженных клетках выделяют три типа латентности (I, II и III тип), характерные для различных видов лимфом: I тип подразумевает избирательную экспрессию EBNA-1 при ВЭБ-положительной лимфоме Беркитта; II тип заключается в экспрессии EBNA-1, LMP-1 и LMP-2 и является отличительным признаком ВЭБ-положительной ходжкинской лимфомы, периферических T/NK-клеточных лимфом; латентность III типа, характеризуемая экспрессией всего набора из девяти латентных белков ВЭБ, наблюдается при лимфопролиферативных поражениях, возникающих у пациентов с тяжелым иммунодефицитом (после трансплантации паренхиматозных органов или стволовых клеток, ВИЧ-инфекции). Тип латентности определяет восприимчивость инфицированных клеток к различным иммунотерапевтическим тактикам. Индуцированные ВЭБ злокачественные новообразования связаны с экспрессией латентных генов. У большинства иммунокомпетентных носителей ВЭБ вирус не индуцирует опухолевый процесс. Новообразования развиваются при комплексном взаимодействии ВЭБ, иммуногенетических факторов, факторов внешней среды (паразитарных инфекций — чаще, малярии, недоедании, потреблении пищи, содержащей канцерогены) и иммунодефицита (ВИЧ-инфекция, трансплантация).

Папилломавирусы человека

Описано около 200 папилломавирусов. Вирусы передаются при контактах через микротравмы кожи и слизистых оболочек, а также половым путем. Папилломавирусы человека вызывают доброкачественные кожные, генитальные, оральные и конъюнктивальные папилломы; индуцируют пролиферацию эпителия, обладают онкогенным потенциалом. С папилломавирусом, особенно ПВЧ-5 и ПВЧ-8, тесно связано развитие немеланомных разновидностей рака кожи. Различают низкоонкогенные папилломавирусы, вызывающие бородавки, которые не малигнизируются, и высокоонкогенные, способные вызвать рак шейки матки, — ПВЧ-16, 18, 31, 33, 35, 45, 51, 52, 58.

Строение. Капсид икосаэдрический, состоит из двух капсидных белков (L1-L2), формирующих 72 пентамера. Геном — двунитевая циркулярная ДНК; имеет в зависимости от вируса восемь ранних генов (E1-E8) и два поздних гена (L1-L2). Гены E6-E7 обладают онкогенной активностью.

Патогенез. В целом, для развития продуктивного поражения ВПЧ (высокого или низкого риска) требуется, чтобы вирус имел доступ к эпителию базального слоя как только эпителиальный барьер был подвержен риску. Папилломавирусы должны инфицировать делящуюся клетку, чтобы стать признанными как малое количество копий ядерной эписомы, и для развития стойкого поражения первичная инфицированная клетка, вероятно, должна быть похожа на долгоживующую эпителиальную стволовую клетку или похожую на нее. Кроме того, связанные с заживлением ран изменения в местном микроокружении, включая увеличение количества факторов роста, могут играть ключевую роль в создании резервуара инфекции в базальном слое. Способность ВПЧ инфицировать, и реплицироваться, и управлять прогрессированием рака зависит от функции вирусного белка, положении в эпителии, где эти белки экспрессируются. Как только инфицированные базальные клетки поделились и в конечном итоге вошли в парабазальный слой, они начинают проходить программу экспрессии генов, которая связана с дифференциацией. Амплификация вирусного генома обычно происходит в срединно-эпителиальных слоях, тогда как сбор и выход вируса происходит вблизи наружной поверхности эпителия.

Несмотря на то, что эффективная амплификация генома требует комбинированного действия множественных продуктов вирусного гена, включая E6, E7, E2 и кодированную вирусом геликазы E1, поддержание репликации в базальном слое эпителия может зависеть от факторов репликации клетки хозяина. Программа, зависящая от дифференциации, которая происходит в надбазальных слоях эпителиальной клетки, включает как временные изменения в активности промотора, так и изменения в шаблонах сплайсинга мРНК, которые облегчают производство различных продуктов вирусных генов на разных стадиях во время программы дифференциации. Функция вирусного белка далее регулируется посттрансляционной модификацией, включая фосфорилирование и протеолитическое деление клетки.


Герпесвирус, ассоциированный с саркомой Капоши

KSHV, или человеческий герпесвирус 8, был обнаружен в 1994 году как член семейства гамма-герпеса человека, присоединившись к ВЭБ. Инфекция иммунокомпрометированных индивидуумов с KSHV была связана с развитием саркомы Капоши, полученной из эндотелиальных клеток, и по меньшей мере двумя B-лимфоцит лимфопролиферативными заболеваниями: первичная выпотная лимфома и многоцентричная болезнь Кастлмана. Однако изучение патогенеза и онкогенеза KSHV затруднено отсутствием значимой модели животных и восприимчивой клеточной культуры.

Онкогенное действие. Две иммортализованные клеточные линии, KS Y-1 и SLK, когда-то использовались для исследований KS и KSHV, но в KS Y-1 были также обнаружены клетки линии рака мочевого пузыря T 24, что затруднило дальнейшую работу. Первичные эмбриональные метанефрические мезенхимальные клетки-предшественники почек крысы восприимчивы к инфекции и трансформации KSHV, но из них распространяются ограниченное количество инфекционных вирионов. Линии B-клеток, полученные из первичной выпотной лимфомы, обычно заражаются KSHV на латентной стадии и могут быть индуцированы для получения малого количества вирионов KSHV, но первичные B-лимфоциты из периферической крови или тонзиллярной ткани являются устойчивыми к инфекции KSHV, и для их инфицирования может потребоваться совместный рост с KSHV-позитивными клетками.

KSHV кодирует несколько важных белков, которые обладают некоторой онкогенной активностью для индуцирования пролиферации клеток, иммортализации, трансформации и передачи сигналов; производства цитокинов; иммунного контроля; антиапоптозной активности; и ангиогенеза. К ним относятся вирусные латентные белки, латентный ассоциированный ядерный антиген (LANA), vFLIP (FADD (Fas-ассоциированный белок с доменом смерти), подобный ферменту, ингибирующему синтез интерферона или ингибирующему белок каспазы 8 (FLICE)), vCyclin и вирусные литические белки G-белкового рецептора (vGPCR), интерферон-регуляторный фактор 1 (vIRF-1) и K1. Хотя истинную онкогенную природу каждого белка еще предстоит определить, накопление доказательств указывает на то, что каждый из них вносит свой вклад в онкогенез KSHV. Таким образом, полный спектр вызванной KSHV злокачественности может потребовать, чтобы несколько онкогенных продуктов работали вместе в присутствии клеток хозяев и экологических факторов. Например, как LANA, так и vIRF-1 нацелены на клеточный опухолевый супрессор p53. LANA также ингибирует pRB и PP2A.vCyclin, активатор CDK4 6,198, подавляет p27kip1, ингибитор CDK199 и вызывает реакцию на задержку старения G1, результаты от гиперактивации NF-κB. vFLIP и K1 активируют путь сигнала NF-κB для предотвращения апоптоза B-клеток. vGPCR и K1 влияют на сигнальные пути AKT и NF-κB и способствуют ангиопролиферативному и воспалительному поражению саркомой Капоши.

Т-лимфотропный вирус человека (HTLV)

T-лимфотропный вирус человека (HTLV) относится к семейству ретровирусов, является возбудителем T-клеточного лимфолейкоза взрослых. Вирус впервые был изолирован в 1980 году от больного Т-лимфомой.

Геном. Gag, Pol и Env являются вирусными структурными белками, другие — вирусными регуляторными/вспомогательными белками. За исключением гена hbz, который кодируется минус-цепью провирусного генома HTLV из 3'-LTR, все остальные гены кодируются плюсовой нитью по направлению 5'-LTR. Следует отметить, что 5'-LTR часто удаляется или метилируется по мере прогрессирования заболевания. Кроме того, на поздних стадиях лейкемиогенеза в гене tax часто возникают нонсенс- или миссенс-мутации. Хотя белок tax и ген HBZ индуцируют опухоли у трансгенных мышей, а p12 проявляет слабую онкогенную активность, ни один из вирусных белков/генов, кроме tax, не требуется для опосредованного HTLV-1 опухолеобразования. Продукт tax гена действует на терминальные повторы LTR, стимулируя синтез вирусной иРНК, а также образование рецепторов IL-2 на поверхности зараженной клетки.


Рисунок 3. Gag, Pol и Env вирусные регуляторные/вспомогательные белки HTLV


Рисунок 4. К леточные пути вирусного онкобелка tax

Патогенез. Проникновение HTLV-1 в клетку человека охарактеризовывает начало выживания и репликации вируса. HTLV-1 связывается с рецептором клеток, имеющих необходимый антиген, что инициирует процесс инвазии. Рецепторный комплекс состоит из транспортера глюкозы (GLUT1), гепаринсульфат протеогликана (HSPG) и рецептора VEGF-165 нейропилина-1 (NRP-1). HTLV-1 взаимодействует с HSPG. Процесс слияния происходит через комбинацию GLUT1 с HSPG/NRP-1, после чего ядро, содержащее вирусную РНК, доставляется в цитоплазму клеток-мишеней. После обратной транскрипции HTLV-1 встраивает свой геном в генома хозяина, чтобы сформировать провирус, окруженный двумя LTR на 5' и 3' концах. Затем провирус транскрибируется и кодирует структурные, регуляторные и вспомогательные белки. Впоследствии вирусные геномные РНК и Gag, Env и Gag-Pol белки переносятся в плазматическую мембрану, чтобы начать собираться в зрелую вирусную частицу.

Вирусы гепатита

Вирус гепатита В (HBV) и вирус гепатита С (HCV) представляют собой несвязанные вирусы, имеющие тропность к гепатоцитам и реплицирующиеся в них. Около 2 миллиардов человек инфицированы HBV, и более 350 миллионов человек становятся хроническими носителями. Только 5-10% взрослых, которые приобретают инфекцию, становятся хроническими носителями, у 30% развиваются прогрессирующие хронические заболевания печени: гепатит, фиброз, цирроз и, наконец, гепатоцеллюлярная карцинома (HCC).

Патогенез. HCC, индуцированная посредством HBV и HCV, развивается в области воспаления и регенерации, что является результатом хронического повреждения печени, а это в свою очередь указывает на то, что патогенез HCC иммунно-опосредован. Эти вирусы постоянно реплицируются в культуре клеток без явных повреждений и смерти клеток, подразумевая, что они являются не цитопатическими. Постоянная репликация вируса является фактором риска для образования HCC, потому что воспаление часто приводит к длительным хроническим заболеваниям печени CLD без выведения вируса. В этом контексте HBV и HCV генерируют белки, подавляющие иммунитет, который должен контролировать хронические инфекции. HBV- и HCV-кодированные белки изменяют экспрессию гена хозяина и клеточный фенотип, что является признаком рака. Эти изменения способствуют независимой от фактора роста пролиферации, сопротивлению к ингибированию роста, инвазии тканей и метастазированию, ангиогенезу, перепрограммированию энергетического метаболизма и устойчивости к апоптозу. Хроническое воспаление также способствует генетической нестабильности в клетках опухоли. Вклад HBV в развитие HCC включает в себя экспрессию гена гепатита Bx (HBx) и, возможно, усеченные пре-S или S-полипептиды карбоксимицина; основной белок и неструктурные (NS) белки NS3 и NS5A HCV способствуют онкогенной трансформации. Изменения в экспрессии гена хозяина, которые способствуют возникновению опухолевого генеза, также, похоже, поддерживают репликацию вируса и/или защиты вирусных гепатоцитов от иммунного опосредованного повреждения и разрушения.


Иммунитет играет важную роль в исходе острых инфекций. Быстрый, сильный и мультиспецифичный ответ против многих белков вирусов гепатита В (HBV) и гепатита C (HCV) приводит к острой инфекции, устраняемой клеткой-хозяином.

Источники

Oncogenes and RNA splicing of human tumor viruses. Masahiko Ajiro & Zhi-Ming Zheng.(September 2014)

Carcinogenic human papillomavirus infection. Mark Schiffman, John Doorbar, Nicolas Wentzensen, Silvia de Sanjosé, Carole Fakhry, Bradley J. Monk, Margaret A. Stanley & Silvia Franceschi.( December 2016)

Human T-cell lymphotropic virus type 1 and its oncogenesis Lan-lan ZHANG, Jing-yun WEI, Long WANG, Shi-le HUANG, Ji-Long CHEN.(2017)

Immunoblastic Lymphoma in Persons with AIDS-Associated Kaposi's Sarcoma: a Role for Kaposi's Sarcoma–Associated Herpesvirus. Eric A Engels M.D., Stefania Pittaluga M.D., Denise Whitby Ph.D., Charles Rabkin M.D., Yoshiyasu Aoki M.D., Elaine S Jaffe M.D. & James J Goedert M.D.(may 2003)

Kaposi’s sarcoma-associated herpesvirus ORF34 is essential for late gene expression and virus production. Mayu Nishimura, Tadashi Watanabe, Syota Yagi, Takahiro Yamanaka & Masahiro Fujimuro( march 2017)

Саркома Капоши: патогенез и основы терапии Н.С. Потекаев, Г.А. Паньшин, Н.П. Теплюк, Н.С. Арсентьев, Е.Ю.,Вертиева,Г.И. Махов, Е.С. Сизова, В.С. Пауков, М.Г. Карташова. (март 2013)

Human T-Cell Lymphotropic Virus: A Model of NF-κB-Associated Tumorigenesis. Zhaoxia Qu and Gutian Xiao(June 2011)

Immune responses and immunopathology in acute and chronic viral hepatitis. Eui-Cheol Shin, Pil Soo Sung & Su-Hyung Park(July 2016)

Pathogenic mechanisms in HBV and HCV-associated hepatocellular carcinoma. Alla Arzumanyan, Helena M. G. P. V. Reis and Mark A. Feitelson(February 2013) Epstein–Barr virus: more than 50 years old and still providing surprises. Lawrence S. Young, Lee Fah Yap & Paul G. Murray( September 2016)

Медицинская микробиология, вирусология и иммунология. В.В. Зверев, А. С. Быков.


Вирус Эпштейна-Барр (ВЭБ) — ДНК-геномный герпесвирус человека из подсемейства Gammaherpesviridae. Он проявляет тропность к В-лимфоцитам (через специфический рецептор CD-21) и эпителиальным клеткам, а также онкогенные свойства.

Источником является больной человек. Пути заражения — воздушно-капельный (в подавляющем большинстве случаев), трансплацентарный, гемотрансфузионный.

Один из самых распространенных вирусов: инфицированность взрослого мирового населения составляет более 90 % и почти не варьируется в зависимости от этноса, условий жизни, доступности медицинской помощи и т. д.

Клинические проявления ВЭБ-инфекции различны. При заражении в раннем детском возрасте клиника может быть стертой, а при заражении в школьном и подростковом возрасте обычно развивается симптомокомплекс инфекционного мононуклеоза (ИМ): фебрильная лихорадка, тонзиллит, лимфаденопатия, гепатоспленомегалия и появление в крови атипичных мононуклеаров.

Этиологическую диагностику Эпштейна-Барр инфекции и оценку ее активности проводят при помощи определения антител к раннему антигену ЕА, к ядерному антигену VCA, EBNA, антител к EBV классов IgG и IgM, серологического профиля (IgMEA-IgG/EBNA-IgG), и, конечно, определения ДНК вируса методом ПЦР в слюне, сыворотке крови и ЦСЖ больного; согласно последним данным, серологические реакции Пауля-Буннеля, Томчика, Ловрика и т. д. показывают до 30 % ложноположительных реакций у лихорадочных больных, а потому их применимость сомнительна.

Если говорить о неврологических проявлениях ВЭБ-инфекции, то и этот список выглядит не менее впечатляющим: энцефалит, энцефаломиелит, поперечный миелит, асептический менингит, острая церебеллярная атаксия, синдром Алисы в стране чудес (аутометаморфопсия), синдром Гийена-Барре. Также доказана роль ВЭБ в развитии острого рассеянного энцефаломиелита, но для его развития могут послужить и другие инфекционные агенты.

Поражение центральной и периферической нервной систем при ВЭБ-инфекции может проявиться как на фоне симптомов мононуклеоза, так и изолированно, и протекать как в острой, так и в хронической форме.

Однако в процентном соотношении поражение ЦНС при мононуклеозе — явление нечастое, и выявляется примерно в 1 % случаев клинически явного ИМ.
Эпштейн-Барр энцефалит у иммунокомпетентных пациентов.

Клиническая картина

Типично развивается на фоне инфекционного мононуклеоза, чаще всего — на 3–7 день болезни. Специфические (исключая симптомы, и так характерные для ИМ) признаки включают в себя фокальные и генерализованные судорожные приступы, вплоть до развития эпилептического статуса, очаговые неврологические дефициты (обычно в виде слабости/спастичности в конечностях, атаксии, асимметрии рефлексов, нарушений слуха и зрения).

Возможно развитие симптоматики энцефалита или энцефаломиелита вне картины инфекционного мононуклеоза, в том числе у людей, перенесших ИМ в прошлом, как проявление реактивации латентной инфекции

Проведя ЭЭГ, можно увидеть диффузное или фокальное замедление ритма, эпилептиформные паттерны, или, в части случаев — нормальную картину.

Лучевые признаки

Радиологические проявления вариабельны (и также могут отсутствовать при наличии клиники). Методом выбора является МРТ.

Сигнальные характеристики энцефалитических очагов те же, что и при энцефалитах другой этиологии:

  • одним из лучевых паттернов ВЭБ-энцефалита является симметричное поражение подкорковых структур: таламусов, базальных ядер, островковой доли
  • симметричное или асимметричное поражение гиппокампов, коры височных и (реже) теменных областей, ножек мозга, понтинных структур, гемисфер мозжечка
  • поражение структур ствола и спинного мозга (иногда в виде поперечного миелита).


Рисунок 1 | A. T1ВИ не выявляет никаких аномалий. B. T2-взвешенное изображение демонстрирует высокую интенсивность сигнала от валика мозолистого тела. С. последовательность FLAIR определила дополнительные области высокого сигнала в задних отделах обоих полушарий. D. все выявленные очаги демонстрировали повышение сигнала на DWI. Е. карта ИКД подтвердила ограничение диффузии в только в валике мозолистого тела. F. на постконтрастном T1ВИ не обнаруживается областей контрастного усиления.

Рисунок 2 | 5-летний мальчик с лихорадкой, судорогами и изменением психического статуса. Аксиальное FLAIR изображение показывает симметричные области гиперинтенсивного сигнала и признаки отека паренхимы мозга в области стриатума с вовлечением наружной капсулы (большие стрелки) и правой поясной извилины (маленькая стрелка).

Рисунок 3 | На аксиальном FLAIR изображении определяется аномально высокий МР-сигнал от тел хвостатых ядер, а также области поражения коры и субкортикального белого вещества головного мозга (стрелки).

Рисунок 4 | Мужчина 43 лет с синдромом приобретенного иммунодефицита, слабостью в нижних конечностях и расстройством мочеиспускания. МР-томограмма поясничного отдела позвоночника после введения контраста определила область гиперинтенсивного в Т2-взвешенных последовательностях сигнала от спинного мозга на уровне Th11–Th12 (миелит).


Большинство из нас знает, что введение вакцин, в разговорной речи называемое прививками, используется с целью стимуляции иммунной системы здорового человека для дальнейшей борьбы с инфекционными заболеваниями, такими как корь, краснуха, оспа и т. д. Иммунная система вырабатывает антитела к безвредным вирусным компонентам; в результате при повторном контакте с патогеном иммунитет с большей вероятностью сможет распознать и атаковать чужеродные вещества.

Вакцины от рака бывают двух типов:

  • профилактические;
  • лечебные (терапевтические).

Вакцины для профилактики рака

По своей сути профилактические вакцины ничем не отличаются от привычных нам вакцин. Данные препараты защищают организм от вирусов, способных вызывать рак. Основа патогенеза онковирусов заключается в связи между вирусной инфекцией и последующей трансформацией клетки в опухолевую. Следовательно, человек должен быть вакцинирован до заражения вирусом. К профилактическим вакцинам относятся, например:

  • вакцина против ВПЧ (вирус папилломы человека), вызывающего почти все виды рака шейки матки и связанный с развитием некоторых видов новообразований, в т.ч. опухолей горла, прямой кишки, а также других видов рака;
  • вакцина против гепатита В, которая предотвращает заражение вирусом гепатита В (HBV). Длительная инфекция HBV может вызвать рак печени.

Вакцины для лечения рака

Терапевтические вакцины предназначены для индукции лизиса раковых клеток посредством стимуляции иммунной системы. Этот тип вакцин наряду с другими видами терапии используется при обнаружении в организме человека опухоли. Терапевтические вакцины способствуют распознаванию белков, экспрессируемых определёнными раковыми клетками, что помогает иммунной системе обнаруживать и уничтожать опухолевые очаги.

Терапевтические вакцины способствуют:

  • остановке дальнейшего роста опухоли;
  • уничтожению раковых клеток, оставшихся после других видов терапии;
  • предотвращению рецидивов.

Типы терапевтических вакцин [1]:

  • Антигенные вакцины
    Эти вакцины производятся на основе специальных белков (антигенов), присутствующих в раковых клетках.
  • Клеточные вакцины
    При создании цельноклеточных вакцин используют всю раковую клетку, а не только определенный клеточный белок (антиген). Такие вакцины производятся на основе собственных раковых клеток, раковых клеток другого человека или раковых клеток, выращенных в лаборатории.
  • Вакцины с дендритными клетками
    Дендритные клетки помогают иммунной системе распознавать и атаковать аномальные клетки — в частности, раковые. Для создания таких вакцин дендритные клетки выращивают в лаборатории вместе с раковыми и затем вводят больному.
  • ДНК-вакцины
    Данные вакцины изготавливаются из кусочков ДНК опухолевых клеток.

Терапевтические противораковые вакцины, используемые в настоящее время, включают:

  • Sipuleucel-T (Provenge), которая используется для лечения рака предстательной железы. Каждая доза содержит специфически модифицированные в лаборатории лейкоциты пациента [2].
  • Вакцину Bacillus Calmette–Guérin (BCG, БЦЖ), которая первоначально была разработана против туберкулеза и затем одобрена для лечения рака мочевого пузыря. БЦЖ — это живые бактерии, вводимые в мочевой пузырь через катетер. Бактерия привлекает иммунные клетки, которые затем атакуют раковые [3].

Вирусы папилломы человека (ВПЧ/HPV) — разнородная группа вирусов семейства Papillomaviridae, которые могут выступать в роли онкогенных агентов. В 1976 году Харальд цур Хаузен впервые высказал предположение об онкогенном потенциале ВПЧ при раке шейки матки (по частоте онкологических заболеваний женщин занимает четвертое место [4]). Долгое время появление рака шейки матки пытались связать с инфекцией вирусом простого герпеса типа 2 (ВПГ-2). А уже в 1984 году Хаузен с соавторами публикует ряд статей, подтверждающих взаимосвязь рака шейки матки с ВПЧ: приблизительно 90 % биоптатов содержали последовательности ДНК папилломавирусов, из них 57,4 % — ВПЧ типа 16 или 18 [5, 6].

В 2008 году за эти открытия Харальд цур Хаузен был удостоен Нобелевской премии по физиологии и медицине. ВПЧ способны инфицировать только эпителиальные клетки, причем в дифференцированных клетках инфекция носит непродуктивный характер. Таким образом, ВПЧ способен поражать эпителий кожи, слизистую оболочку мочевыводящих и половых путей, ротовой полости, гортань, глаз и другие органы. Вирус блокирует экспрессию антионкогенов p53 и pRb и усиливает пролиферацию клеток. В связи с этим основное проявление ВПЧ-инфекции — это появление на пораженном участке новообразований, чаще доброкачественных, таких как обычные, плоские, аногенитальные бородавки и папилломы на подошвах ног.

Онкогенные типы ВПЧ обнаруживают при таких злокачественных новообразованиях, как колоректальный рак, рак влагалища, полового члена, слизистой оболочки ротоглотки. Но четкая взаимосвязь между вирусом и образованием злокачественной опухоли на данный момент была доказана только для рака шейки матки [7].

По современным данным, ВПЧ различных типов обнаруживают в 99,7 % биоптатов при верификации рака шейки матки, при этом типы 16 и 18 присутствуют в 70 %. Так как ВПЧ является одним из главных факторов риска развития данной разновидности рака, были предприняты успешные попытки разработки вакцин против ВПЧ, которые опосредованно служат вакцинами от рака шейки матки.

ВОЗ рекомендует проведение вакцинации на национальном уровне и девочкам, и мальчикам в возрасте 9–14 лет, то есть перед началом половой жизни. При этом вакцинироваться можно и позже, до 45 лет (ранее считалось, что только до 27 лет). В ряде стран вакцины против ВПЧ уже включены в национальный календарь прививок в различном объеме (не во всех странах вакцинируют мальчиков), в России — только в ряде регионов.

Еще одним онкогенным вирусом является вирус Эпштейна — Барр, которым заражены до 90 % населения Земли. Вирус является возбудителем инфекционного мононуклеоза, чаще всего проявляющегося клинически при заражении в юношеском возрасте.

Этот вирус поражает клетки иммунной системы, а именно B-лимфоциты, ответственные за выработку антител. Носительство вируса Эпштейна — Барр связывают с возникновением таких форм онкологии, как лимфома Ходжкина, лимфома Беркитта, карцинома желудка и рак носоглотки. В настоящее время причина возникновения мутации доподлинно не известна, однако выявлена связь некоторых штаммов, распространенных в определенных областях, с развитием злокачественных новообразований. Так, у пациентов с лимфомой Беркитта в экваториальной Африке в 100 % случаях тест на вирус Эпштейна —Барр дает положительный результат [11].

В настоящее время вакцина от данного вируса все ещё находится в разработке. Процесс создания вакцины осложняется высокой вариабельностью штаммов вируса в зависимости от зоны распространения [12].

Развитие онкологических заболеваний можно также предупредить с помощью вакцин от вирусов гепатита. Гепатиты, вызываемые вирусами гепатита B и C, могут привести к развитию рака печени. Вирус гепатита B при персистировании в организме способен реактивироваться в условиях иммуносупрессии — например, при ВИЧ-инфекции или при прохождении химиотерапевтического лечения. В таком случае вакцина применяется не для профилактики рака, а для его лечения.

Вакцина против гепатита B, по данным некоторых исследователей, может работать в качестве противоракового адъюванта — вещества, усиливающего иммунный ответ [13]. Причем вакцина может использоваться не только при раке печени, но и при лечении злокачественных опухолей в других органах — например, глиобластомы [14]. Если говорить о формировании иммунитета против вируса после введения вакцины, то это возможно только в условиях нормального функционирования иммунной системы, то есть вакцинирование должно проводиться до развития иммунодефицита.

Итак, мы убедились, что привиться от рака возможно, но только в случае, если рак провоцируется онкогенными вирусами. Но помимо вирусов, инициаторами злокачественного роста могут служить и бактерии. Так, примером может служить широко известная Helicobacter pylori, с которой ассоциирован в том числе и рак желудка. При этом носители могут и не подозревать о таком риске, ведь часто присутствие H. pylori никак не проявляется [15].

К настоящему времени нам следует учитывать, что носителями H. pylori является более 50 % населения планеты и что, согласно данным Интернационального агентства по изучению рака, эта бактерия относится к первой группе канцерогенов [16].

В настоящее время все больше людей узнают о микробиоме и его пользе; при этом все реже мы задумываемся о вреде бактерий в желудочно-кишечном тракте, списывая все проблемы на иные микроорганизмы.

Но, во-первых, H. pylori приютилась не в кишечнике, а в желудке. Как известно, рН в желудке низкий (другими словами, кислотность высокая), а в таких условиях микроорганизмам крайне сложно выживать. Но, подобно тому, как это бывает в сценарии фильма, зло порой оказывается сильнее. Вот и в нашем случае в агрессивной среде желудка научилась выживать патогенная H. pylori.

Во время инфекции H. pylori воздействует, в частности, на клеточный белок кортактин, который необходим для правильной регуляции перестроек цитоскелета в здоровых клетках. Нарушение регуляции активности кортактина играет решающую роль в развитии различных форм рака, а также незлокачественных заболеваний, таких как воспалительные заболевания кишечника (гастриты) [17].

Из вышесказанного одно ясно точно — вакцины, которые препятствуют развитию рака, существуют, их активно используют в исследованиях, а некоторые даже применяют в клинике для лечения и профилактики онкозаболеваний — например, при терапии рака печени (вирус гепатита B) и предотвращения рака шейки матки (ВПЧ). Исследования в данном направлении интенсивно развиваются, и на сегодняшний день уже можно с уверенностью сказать, что они вносят весомый вклад в здравоохранение, а в дальнейшем такие разработки могут принести ещё больше пользы в борьбе против рака.

Очень велик, однако, вклад исследований онкогенных вирусов в понимание этиопатогенеза злокачественных заболеваний в целом. Ученые смогли удостовериться в том, что патогенез онкозаболеваний может быть связан с внешними биологическими возбудителями, и спектр воздействия на них в ходе терапии должен быть шире, методы — изящнее и продуманнее. Если брать во внимание подход, заключающийся в профилактике канцерогенных воздействий, можно с толикой уверенности предположить, что в будущем противоопухолевая терапия может стать крайне эффективной.

Вакцина против рака — это недостижимый идеал медицины, к которому стремятся ученые со всего мира, косвенно или напрямую. Хоть его приближение и связано в наибольшей степени с генной инженерией, в рамках которой уже сейчас используется виротерапия, мы были рады поделиться с вами этой безусловно полезной информацией о вакцинах против онковирусов, которые хоть и с натяжкой, но можно назвать вакцинами против рака.

Читайте также: