Вирус не лечится ничем

Обновлено: 22.04.2024

Почему с вирусами нельзя бороться антибиотиками? А чем можно? Почему разработать эффективный противовирусный препарат так сложно? А вакцина — это лекарство? Разбираем популярные вопросы, мифы и сомнения

Вирусы отличаются от бактерий и по строению, и по способу размножения. Одинаковые препараты не применяются для тех и других.

Самым эффективным средством против вирусов остается наш собственный иммунитет, но если он ослаблен — могут быть назначены препараты, подавляющие вирусную нагрузку.

Созданию эффективных препаратов мешают изменчивость вирусов и их способность захватывать наши собственные клетки.

Вакцина — не лекарство, а скорее "обучающий курс" для нашего собственного иммунитета. В идеале вакцина лучше, но для некоторых болезней ее нет — а вот лекарства есть.

Почему вирус нельзя убить антибиотиком?

Антибиотики часто выписывают при инфекционных заболеваниях. Из-за этого может сложиться представление, что их нужно пить при любых инфекциях. На самом деле они действуют только против бактерий. Хотя у бактериальных и вирусных болезней симптомы часто похожи (жар, насморк, кашель, слабость), у их возбудителей разная природа. Они отличаются и по строению, и по способу выживания.

Бактерии — одноклеточные организмы, которые размножаются примерно так же, как и человеческие клетки. Антибиотик может нарушить целостность бактериальной клетки (например, вмешаться в процесс формирования клеточной стенки) или сбить механизм её размножения. Важный момент: препарат должен действовать именно на чужеродные клетки, не затрагивая наши.

Вирусы устроены иначе. У них нет собственной клетки, они живут и размножаются за счет чужих — захватывая их и используя как фабрики по производству своих копий. Созревшие вирусные частицы вырываются наружу, разрушая клетку и заражая ее соседей. Но антибиотик, заточенный под взаимодействие с бактериальной клеткой, не причинит вреда ни отдельной вирусной частице, ни уже зараженной ею человеческой клетке.

Как тогда с ним бороться?

Обычно с этим справляется сам организм, и помощь ему не требуется. Но бывает, что иммунитет ослаблен, и болезнь изначально развивается по тяжелому сценарию — либо вирус умеет обходить защиту (например, поражает сами иммунные клетки, как это делает ВИЧ). Тогда врачи назначают препараты, которые действуют непосредственно на вирусные частицы.

Часть препаратов, попадая в кровь, связываются с белками на поверхности вируса, которые он использует для прикрепления к клетке, и блокируют их. Если вирус уже попал в клетку, можно попытаться нарушить механизм его размножения. В этом случае используют вещества, близкие по структуре к фрагментам вирусного генетического кода (нуклеотидам). Когда они проникают в зараженную клетку, то заменяют собой нормальные части вирусной ДНК, из-за чего ему не удается создавать свои копии.

Как разрабатывают противовирусные препараты?

Чтобы создать работающее лекарство, ученым нужно изучить вирус — его строение, принцип заражения, химические процессы, которые его сопровождают. Препарату всегда нужна мишень, на которую он будет действовать. Например, у вирусов гриппа такими мишенями служат белки гемагглютинин, нейраминидаза (на них указывают буквы H и N в названиях штаммов) и M2. Каждая группа препаратов действует только на один тип белков — точнее, даже на их составные части.

Вещества, которые ученые сочли перспективными, сначала тестируются in vitro — в пробирке, на культуре клеток. Но даже если результаты показали, что концентрация вирусной ДНК снижается, результаты могут не подтвердиться в живых организмах. Вещество может плохо всасываться в кровь или изменять свою структуру, попадая в желудок или кровь. Точно установить причины плохих результатов в клинических испытаниях не всегда удается.

Почему эффективных препаратов так мало?

За 60 лет регулирующие органы разных стран одобрили несколько десятков препаратов, но лишь против 5% всех известных человеческих вирусов. Это вирусы гриппа, ветряной оспы, папилломы человека, герпеса, респираторно-синцитиальный вирус, вирусы гепатита С и B, а также ВИЧ. Но и среди них большинство не способны полностью изгнать вирус из организма, а могут только остановить или затормозить его распространение.

Одна из сложностей в том, что вирусы очень быстро размножаются и мутируют. Фармакологи могут долго подбирать соединение, которое свяжется с вирусным белком определенной структуры, — но в ходе мутации его структура может измениться, и вирус приобретет устойчивость к препарату. Именно это произошло с первыми лекарствами от вируса гриппа, которые были заточены под белок M2. Оказалось, что ген, который кодирует этот белок, склонен к частым мутациям. Сейчас эти препараты не рекомендуют применять без поддержки других.

У некоторых вирусов (например, того же гриппа) отдельные частицы имеют очень разные форму и размеры, с разным числом белков на поверхности. Молекулы препарата могут не закрепиться на мелких или нестандартных частицах, и они все равно найдут способ проникнуть в клетки и заразить их. Эффект от лечения будет, но хуже ожидаемого.

Некоторые вирусы трудно "выкурить" из захваченных ими клеток. Например, ВИЧ проникает в Т-лимфоциты — иммунные клетки, благодаря которым организм защищает себя от инфекций. Вирус встраивается в их геном, и в результате клетки производят уже зараженные копии самих себя. Сегодня антивирусные препараты могут блокировать воспроизведение генома вируса, мешать ему встраиваться в ДНК клеток, предотвращают сборку новых копий — но достать его внутри клеток они не могут.

Чем лекарство отличается от вакцины? Что лучше?

Вакцина стимулирует выработку собственного иммунитета у человека: знакомит иммунную систему с вирусом, а дальше сама вырабатывает защиту — антитела и клетки-киллеры, которые в будущем могут дать отпор настоящему вирусу. При этом вирус в вакцине может быть как живым, но ослабленным, так и мертвым. А в ряде случаев используют только белки этого вируса.

Антитела, в отличие от препаратов, вырабатываются естественным путем. Это белковые молекулы, которые подходят к вирусным белкам, как ключ к замочной скважине. В каком-то смысле можно сказать, что организму виднее, как именно ему бороться с инфекцией. Он сам распознает патоген, сам запускает защитную реакцию — и все это происходит быстрее, чем мы поймем, что заражены.

Но в некоторых случаях вакцину оказывается разработать сложнее, чем лекарство. Например, вакцины от ВИЧ до сих пор нет, а вот существующие препараты (если их начать принимать как можно раньше и делать это регулярно) позволяют вести полноценную жизнь. Также пока нет и вакцины от гепатита С — зато современные препараты позволяют изгнать вирус из организма почти в 100% случаев.

Лечение людей, инфицированных новым коронавирусом, заключается в том, что им дают жаропонижающие лекарства, вводят внутривенно жидкость для гидратации и поддержания в норме кровяного давления, а в более тяжелых случаях подключают к ИВЛ ­– аппарату искусственной вентиляции легких, который помогает дышать.

Ирина Зиганшина

В проблеме пытается разобраться изданиеThe Philadelphia Inquirer.

Вирусы плохие и разные

За последние несколько десятилетий фармацевтические компании разработали лекарственные препараты против нескольких вирусов, в том числе ВИЧ и гриппа, однако их количество ничтожно по сравнению с богатым арсеналом существующих на рынке антибиотиков (напомним, что вирусы – это не бактерии, поэтому антибиотики против них не помогают).

Чтобы обрести способность к синтезу и начать размножаться, им необходимо попасть в клетку-хозяина. Поэтому создать препарат, который будет уничтожать прицельно вирус и при этом не затронет организм инфицированного человека, не самая простая задача.

Когда удается блокировать размножение вируса – как это делают препараты против ВИЧ, инактивирующие вирусные ферменты, необходимые для репликации, – тогда болезнь можно остановить.

Но даже такие средства именно что держат болезнь под контролем, а не устраняют сам вирус.

Еще одна причина, по которой трудно создавать лекарства, это великое разнообразие вирусов. Все бактерии хотя бы отдаленно связаны друг с другом и имеют некоторые общие характеристики, такие как наличие клеточной стенки.

Поэтому лекарство, которое работает против одного вида бактерий, например разрушая его клеточную стенку, часто работает и против другого. Именно так действуют антибиотики широкого спектра действия – те самые, которыми по причине их универсальности так бездумно злоупотребляют, что уже привело к развитию резистентности у некоторых бактерий.

В отличие от бактерий, вирусы могут принципиально отличаться друг от друга: некоторые используют РНК в качестве своего генетического кода, а другие ДНК, некоторые имеют оболочку, а другие нет.

Чтобы объяснить, в чем разница между бактериями и вирусами, биологи предлагают такое сравнение: если все бактерии можно уподобить разным маркам автомобилей, то вирусы могут отличаться друг от друга как автомобили и морские суда. Старые препараты для новых болезней Вот тут-то и возникает денежный вопрос. Разработка нового препарата для каждого нового вируса требует отдельных, и очень значительных,затрат времени и ресурсов. Разумеется, фармацевтическим компаниям выгоднее иметь один универсальный препарат, который будет лечить от всего, чем сотню направленных на отдельные болезни. Поэтому фармацевты порой тестируют уж имеющиеся лекарства против одного вируса, чтобы проверить, не работают ли они и против другого.

Так, в случае с новым коронавирусом, как известно, японским и китайские ученые сейчас активно тестируют препарат под названием ремдезивир, изначально разработанный для лечения вируса Эболы. Если по прямому назначению он оказался неэффективным, то в случае с SARS-CoV-2 показал более обнадеживающие результаты.

А вот компания Johnson&Johnson была вынуждена недавно сделать заявление в связи с тем, что стали циркулировать слухи, будто ее исследователи проверяют против нового коронавируса препарат дарунавир. Как утверждают в Johnson&Johnson, они действительно проводят скрининг различных противовирусных соединений, изучая их действие на коронавирус, но положительных результатов пока не достигли.

Не упустить момент

Справедливости ради надо сказать, что ученые не столь долго занимаются вирусами. Если бактерии были впервые замечены под микроскопом еще в 1683 году, то существование вирусов было подтверждено лишь спустя два с лишним столетия, и то это было сделано вслепую.

В 1892 году русский биолог Дмитрий Ивановский извлек экстракт из зараженных растений табака, пропустил его через фильтр, поры которого меньше бактерий, и обнаружил, что эта отфильтрованная жидкость может инфицировать здоровые растения. Невидимый глазом агент каким-то образом передавал болезнь. Разглядеть тот самый вирус табачной мозаики ученые смогли лишь после изобретения электронных микроскопов в 30-х годах XX века. Поэтому, если эффективные антибиотики появились почти сто лет назад, то противовирусные препараты – значительно позже. И помогают они не всегда: важно не упустить момент.

Противовирусные препараты, например, могут уменьшить продолжительность гриппа, но только в том случае, если они назначаются на ранних стадиях заболевания. К тому времени, как у человека развиваются тяжелые симптомы, они становятся практически бесполезны. Кстати, похоже, это касается и ремдезивира для терапии нового коронавируса: ряд исследований показывает, что этот препарат действует лишь на пациентов, у которых болезнь протекает легко.

Пока же остается только поддерживающая терапия. Впрочем, и она при правильном применении может давать эффект: иногда все, что нужно, чтобы иммунная система справилась с вирусом, это отдых, чистые простыни, хорошая еда, достаточное питье и лекарства для облегчения неприятных симптомов. Главное, чтобы это было доступно всем нуждающимся. Но в моменты эпидемий даже развитые страны порой не в состоянии этого обеспечить.

Фото: пресс-служба

Из 1500 известных вирусов человечество победило раз и навсегда только оспу. Во всех остальных случаях — даже если речь идет о скосившей в свое время пол-Европы чуме — вирус появляется снова, и от новых массовых смертей человечество спасают вакцинация и другие профилактические меры.

Пандемия коронавируса актуализировала многие вопросы, которые раньше волновали в основном только специалистов: как возникают новые вирусы, в каких случаях они вызывают эпидемию, какие шаги нужно предпринять, чтобы предотвратить массовые смерти. Мы обсудили эти вопросы и расспросили об особенностях коронавируса инфекциониста Владимира Никифорова, доктора медицинских наук, заведующего кафедрой инфекционных болезней и эпидемиологии РНИМУ им. Н. И. Пирогова.

Что такое эпидемия и пандемия? Какие статистические показатели должно иметь заболевание, чтобы ему можно было присвоить статус эпидемии и пандемии?

Можно ли сказать, что каждый год случается пандемия каких-то заболеваний?


Почему одни вирусные заболевания распространяются быстро, а другие — нет?

Скорость распространения зависит от механизма заражения и пути передачи инфекции. Например, если инфекция передается воздушно-капельным путем, то это происходит, как правило, быстро. Вспышка кори распространяется очень быстро. Сейчас пандемии кори быть не может, потому что в основном население привито от этого заболевания. Есть такое понятие, как индекс контагиозности: сколько человек в процентах заболеет, получив заражающую дозу. Чем выше этот индекс, тем хуже для нас с вами. Для кори индекс контагиозности равен 95%, то есть из 100 человек, которые получили заражающую дозу, заболеют 95. Грипп и COVID-19 быстро распространяются воздушно-капельным путем. Но, как правило, у основной массы инфекционных болезней этот показатель порядка 50%.

Также скорость распространения болезни зависит от путей передачи вируса. Например, бешенство передается только при укусе животными, поэтому никаких эпидемий бешенства для человека не может быть.

Почему вирусы не уничтожат всех людей на Земле?

По каким причинам обычно заканчиваются эпидемии?

Основная причина в том, что накапливается коллективный иммунитет. Если переболели больше 60–70% от всего населения, то передача заболевания резко сокращается и эпидемия глохнет. Но где-то возбудитель обязательно оставит себе лазейку. Он может сделать какой-то процент переболевшего населения просто носителями, а у кого-то заболевание перейдет в хроническую форму. Носитель — это тот, у кого нет никаких симптомов (при хронической форме заболевания у человека минимальные симптомы). Другой возможный вариант — если вирус или бактерия перешли к людям от животных, то они могут на какой-то период спрятаться обратно в животных, а затем снова перейти на человека.

До сих пор у нас сохраняется страх перед чумой, хотя она с 1912 года перестала уносить сотни тысяч жизней. Насколько опасны локальные вспышки заболевания разными видами чумы в России и мире в XXI веке?

Последняя самая известная и детально проанализированная эпидемия чумы была в 1911–1912 годах в районе Харбина, так называемая чума в Маньчжурии. Харбин был русским городом на территории Китая, и наши врачи помогали лечить китайцев.

Это чума пришла из ниоткуда и ушла в никуда. Вспыхнула в 1911 году и в 1912 году затихла, но не полностью. Это пример классического занесения заболевания в человеческое общество из животного мира. Чума — это прежде всего болезнь грызунов. Болеют в основном суслики, сурки, песчанки, тушканчики. Сейчас животные продолжают болеть чумой вдоль южной границы России с Монголией, в районе Алтая, Байкала. Природные очаги чумы существуют в районе Северного Кавказа и Астрахани.

Были единичные случаи заболевания чумой среди людей в 1979, 2014 и 2015 годах. Туристы иногда привозят чуму из Монголии. Там может произойти контакт с сурками. Местные монголы их едят. Сурки очень пугливые, и на них трудно охотиться, а вот больной чумой сурок теряет страх и легко попадается. Когда люди начинают разделывать тушку этого несчастного сурка, происходит заражение чумой. Поэтому в Монголии в 2020 году мы наблюдали локальную вспышку чумы среди тех, кто охотился.

На нашей границе с Монголией практически нет людей, а те, кто там живет, привиты от чумы и предупреждены о чумных животных. По дальневосточным ковыльным степям можно неделю ехать на машине и не встретить ни одного человека. Так что эпидемия чумы России не грозит, но локальные вспышки по миру могут быть вполне возможны.

Еще есть один постоянный большой очаг чумы — на Мадагаскаре. Последняя вспышка чумы на Мадагаскаре была в 2017 году, заболело более 1300 человек. Да, еще в Китае все время есть чума, но китайцы очень не любят говорить о своих болезнях, так и с коронавирусом было. Они иногда вынуждены сообщить, что в таком-то году около пяти случаев чумы, но я думаю, что на самом деле их намного больше.

Еще один очаг чумы — в Средней Азии. Для нас важен очаг в районе Байконура в Казахстане, и ничего мы с этим сделать не можем, это природный очаг. Вакцинация животных невозможна. Благо, там никто не бродит по пустыне, местные песчанки, основные переносчики чумы в этом месте, несъедобны, никто на них не охотится.

С чем связан тот факт, что источником пандемии чаще всего становится Китай?

Кроме того, климат: в юго-восточных провинциях жара, влага, идеальная среда для вирусов.


Расскажите кратко, как удалось победить современные вирусные эпидемии, которые представляли большую опасность для людей на протяжении последнего столетия (оспа, холера, свиной грипп, SARS-1)?

Прежде всего, вакцинальная работа. Кто бы что ни говорил против вакцинации, инфекция побеждена во многом благодаря противоэпидемическим мерам, в особенности вакцинам. Правда, инфекционных болезней насчитывается около полутора тысяч. Полностью победили мы только одну — натуральную оспу. В 1979 году был зафиксирован последний случай заболевания оспой, с 1980-81 годах мы перестали прививаться от нее. Также удалось резко, хоть и не полностью, снизить заболеваемость полиомиелитом благодаря вакцине нашего советского ученого Чумакова.

Была страшная пандемия свиного гриппа в 2009 году. Он пришел из Китая. Прошла очень сильная мутация, вирус получил совершенно новую внешнюю оболочку. До этого мы делали вакцину от гриппа на куриных яйцах: заражаем куриное яйцо, эмбрион жив, и внутри яйца растет вакцинальный штамм вируса. Но в 2009 году свиной грипп был настолько агрессивным, что убивал куриные эмбрионы. Не получалось вырастить нужное количество вируса, чтобы сделать вакцину. Решить проблему удалось с большим трудом. Но этот вирус обладал всеми особенностями нормального природного вируса. В 2009 году он действительно убивал, как на сегодняшний день ковид. За год он потихоньку ослаб, нормальный природный вирус не хочет убивать, он обязательно будет снижать вирулентность.

По-хорошему, ковид за год должен был вирулентность снизить, но пока этого не происходит. Если бы он был естественным, он бы постепенно перешел в статус сезонного ОРВИ, а он пока бушует.

Помимо COVID-19, из семейства коронавирусов мы еще слышали об эпидемии SARS и MERS. Насколько опасно семейство коронавируса для человечества?

Это огромное семейство, около пятидесяти разновидностей. Есть опасные коронавирусы для кошек, для собак, в принципе это семейство вирусов животного мира. С 1965 года известно четыре коронавируса, которые вызывали ОРВИ у человека, кашель, насморк, снижали иммунитет, но никто даже не думал ни создавать вакцину, ни препараты против этих коронавирусов. Достаточно было тех препаратов, которые продаются в аптеках.

Вакцину теоретически можно создать против чего угодно. Но не всегда удается. От СПИДа не получается, от гепатита C тоже…. Но смотрите, сколько вакцин сделано за год против ковида. Для этого нужны экономические и чисто клинические показания. Зачем вам вакцина от насморка? Ведь у вас насморк и так через три дня пройдет. Тогда как любая вакцина всегда опасна побочными эффектами. А вирусов сотни. И вообще, очень сложно получить противовирусный препарат прямого действия, чтобы он влиял конкретно на вирус. Когда вы работаете с бактериями, все более или менее просто: у них собственный обмен веществ, и вы можете его нарушить. А у вируса вообще никакого обмена веществ нет, как к нему подступиться? Опасность в том, что вместе с вирусом можно убить клетку, в которой он находится, то есть убить самого больного. Как убить вирус и не убить больного? Приходится идти в обход, блокировать ферменты, которые вирусу нужны, это сложно.

Есть вероятность, что нам всегда придется жить с коронавирусом?

Думаю, он пришел навсегда. Просто он либо деградирует до обычного сезонного гриппа, либо опустится еще ниже — до уровня обычных ОРВИ. Но то, что он никуда не уйдет, это точно, ему у нас явно понравилось.


И от него нужно будет прививаться каждый год, как от гриппа?

Не исключаю. Но вообще маловероятно. Он не мутирует с такой же скоростью, как грипп. Впрочем, с этим коронавирусом все прогнозы оказываются ложными. Лучше преодолевать неприятности по мере их поступления.

Фото: Edward Jenner/Pexels

Юлия Ткаченко, руководитель блока медицинских инноваций BestDoctor

Мнение ученых по поводу распространения нового штамма разделились: одни считают его предвестником окончания пандемии, другие допускают появление еще более заразных мутаций.

Так, глава Европейского регионального бюро ВОЗ Ханс Клюге заявил, что после омикрон-штамма, возможно, наступит конец пандемии. Ранее такую же версию выдвинули ученые из ЮАР: их исследования показали вероятность окончания эпидемической фазы COVID-19 и переход ее в эндемическую, характерную для определенной местности.

Российские эксперты с этой версией не согласны. Александр Гинцбург, директор Национального исследовательского центра эпидемиологии и микробиологии им. Н. Ф. Гамалеи, считает, что новый штамм не поможет окончанию пандемии в России. Распространение омикрона может спровоцировать появление новых, более опасных мутаций вируса. Чтобы предотвратить такой сценарий, в стране должны быть привиты 75–80% населения.

Главный внештатный инфекционист Минздрава Владимир Чуланов также заявляет, что на омикроне эволюция вируса COVID-19 не остановится. Благодаря высокой контагиозности вирус очень быстро распространяется, и большое число одновременно заболевших может вызвать перегрузку медицинской системы. Поэтому важно вакцинироваться и через полгода делать бустерную прививку, а также соблюдать меры предосторожности: носить маски, соблюдать дистанцию, избегать мест большого скопления людей. В таком случае риск заразиться есть, но за счет вакцины вирус может быть блокирован на самом раннем этапе, после прикрепления к эпителию верхних дыхательных путей.

Даже в этом случае можно заразиться, считает Чуланов. Но это может произойти без дальнейшего развития заболевания: оно, скорее всего, пройдет в более легкой форме, так как иммунная система быстро заблокирует вирус.

22 января правительство РФ утвердило перечень дополнительных мер по борьбе с омикроном. Рассказываем, на что нужно обратить внимание при первых признаках болезни.

Симптомы омикрона


Юлия Ткаченко, руководитель блока медицинских инноваций BestDoctor

Пока не существует научных данных об особенностях симптоматики штамма омикрон, отличить омикрон по его проявлениям от другого штамма нового коронавируса невозможно. Стоит отметить, что и отличить COVID-19 от другой ОРВИ (острой респираторной вирусной инфекции) по одним лишь симптомам довольно затруднительно, в связи с чем при симптомах ОРВИ врачи рекомендуют выполнить ПЦР-тест на COVID-19.

Основные признаки

Главные симптомы штамма омикрон похожи сезонные ОРВИ

Согласно данным Роспотребнадзора, главные симптомы штамма омикрон похожи на те, что бывают при сезонных ОРВИ [4]:

  • слабость;
  • головная боль;
  • повышение температуры до 38 °С, иногда и выше;
  • ломота в мышцах и суставах;
  • заложенность носа, насморк;
  • першение в горле;
  • чихание, кашель;
  • снижение аппетита;
  • потеря обоняния и вкусовых ощущений (редко).

Омикрон может проявляться как в виде одного симптома, так и сразу в комплексе нескольких из них, считает врач-инфекционист Евгений Тимаков. А в случае более выраженной болезни у пациентов также наблюдаются реакции со стороны ЖКТ.

До недавнего времени одним из основных признаков омикрона ученые считали боль в горле [5]. Но симптомы каждой новой мутации коронавируса сильно различаются, поэтому не стоит пытаться по ним диагностировать заболевание штаммом омикрон, заявил вирусолог, профессор МГУ, доктор биологических наук Алексей Аграновский. У нового штамма довольно размытые признаки. Известно лишь, что он меньше поражает легкие и в большей степени — верхние дыхательные пути. Поэтому боль в горле может быть симптомом коронавируса далеко не во всех случаях.

Юлия Ткаченко: Признаки болезни остаются теми же, что и у других штаммов коронавируса: в первую очередь характерны повышение температуры, кашель, общая слабость, притупление или искажение обоняния. Также возможны затруднение дыхания, одышка, чувство неполного вдоха. Кроме того, омикрон, как и другие штаммы, способен спровоцировать повышенное тромбообразование, которое может проявиться болью в ногах (тромбоз вен нижних конечностей), одышкой и удушьем (тромбоэмболия легочной артерии), болью в сердце (острый коронарный синдром) и неврологической симптоматикой (острое нарушение мозгового кровообращения).

Отличительные особенности

Носитель штамма омикрон может быть заразным уже в первые сутки после инфицирования

У нового штамма коронавируса есть несколько отличий:

  1. Инкубационный период. У омикрона он значительно короче, чем у других штаммов. По предварительным данным, он составляет от двух до пяти дней (против 6–8 дней у предыдущих мутаций коронавируса) [6].
  2. Высокая контагиозность. По сравнению с предыдущим штаммом дельта, омикрон передается в семь раз быстрее. А носитель вируса может быть заразным уже в первые сутки после инфицирования.

Юлия Ткаченко: Главной отличительной особенностью штамма омикрон является особое строение спайк-белка вируса. Спайк-белок — это структура, благодаря которой вирус проникает в клетки организма. Именно к этому белку у нас образуется иммунитет после перенесенной болезни или вакцинации, поэтому изменение строение белка несет за собой повышение устойчивости вируса к нашему иммунитету. Другими словами, штамм омикрон более устойчив к иммунитету по сравнению со своими предшественниками, и люди могут заразиться им, даже если уже переболели более ранними штаммами.

Еще одной отличительной особенностью нового штамма является более высокая заболеваемость среди детей и подростков, что также связывают с новым строением спайк-белка и облегченным проникновением вируса в клетки.

Есть и хорошая новость: первые результаты оценки тяжести течения болезни показывают, что среди заболевших штаммом омикрон меньше пациентов с тяжелым течением заболевания, они реже попадают в реанимацию и оказываются на ИВЛ, однако эти данные требуют подтверждения более масштабными исследованиями.

Как выявляют омикрон

Центр эпидемиологии и микробиологии имени Гамалеи разработал тест для определения омикрона, сообщил Александр Гинцбург. Система выявляет наличие вируснейтрализующих антител к омикрон-штамму. Но пока она доступна только НИЦ.

Юлия Ткаченко: Стандартная диагностика остается такой же, как и ранее, — ПЦР-тестирование. Для врачей вопрос о том, болен пациент омикроном или, к примеру, дельтой, не является принципиально важным, так как лечение будет одинаковым. Информация о том, каким именно штаммом болен человек, нужна в первую очередь ученым для проведения исследований. Для этих целей используется исследование генома вируса — секвенирование.

Вакцина против омикрона

Вакцина обеспечит сильную защиту от тяжелых случаев заболевания


Волна заражений новым штаммом коронавируса — омикроном— только набирает обороты в РФ, поэтому убедительных данных об эффективности вакцин против заражения пока нет. Однако резкий подъем кривой заболеваемости не сопровождается параллельным ростом госпитализаций и смертей. В то же время необходимо помнить, что в больницу пациенты с коронавирусом попадают в среднем спустя 10–15 дней после заражения, поэтому расслабляться пока явно преждевременно, особенно тем, кто до сих пор не привился.

Помимо исключительно высокой заразности, у штамма омикрон есть ряд особенностей, о которых уже известно. Это короткий инкубационный период (1–3 дня) и склонность в большей степени поражать верхние дыхательные пути, чем ткань легких, что, конечно, гораздо безопаснее для здоровья и жизни человека.

Эффективность почти всех существующих в настоящее время вакцин против новых штаммов снижается со временем и уступает степени защиты от предыдущего штамма — дельты.

Для того чтобы помешать новому штамму уйти от защиты, на помощь приходит бустерная доза, или ревакцинация.

Опыт стран, уже прошедших взрывной рост заболеваемости новым штаммом, указывает на то, что все вакцины защищают от тяжелого течения заболевания и предотвращают необходимость госпитализации. Так, по некоторым данным, риск попасть в больницу для вакцинированных в пять раз меньше, чем у непривитых. Речь идет о тех, кто получил третью дозу вакцины (ревакцинацию/бустер). Причем эффективность против штамма омикрон возрастает на 37% уже через неделю после третьей дозы.

Напомню, что Минздрав рекомендует пройти ревакцинацию через шесть месяцев без анализа титров антител.

Лечение омикрона

Методы терапии нового штамма коронавирусной инфекции не отличаются от лечения других мутаций. Новых протоколов диагностики и лечения пациентов с COVID-19, утвержденных Минздравом РФ, на дату публикации материала не выпускалось.

Существующие схемы лечения коронавируса, которые включают в себя глюкокортикостероиды и блокаторы рецепторов к интерлейкину-6, эффективны и против омикрона, считает ВОЗ [12]. Глюкокортикостероиды — это гормоны для лечения COVID-19, их использование Организация одобрила в сентябре 2020 года. Блокаторы рецепторов к интерлейкину-6 — вторая рекомендованная группа лекарственных препаратов: они улучшают состояние пациентов в тяжелом и критическом состоянии.

Юлия Ткаченко: Специфического лечения против нового штамма на данный момент не существует. Все терапевтические стратегии, применимые к предшественникам нового штамма, используются и при омикроне. Актуальной остается и вакцинация, вопреки расхожему мнению о том, что вакцина против омикрона неэффективна. Уже существуют исследования, которые показывают, что эффективность вакцин достаточно высока для того, чтобы защитить человека от тяжелого течения заболевания.

Важно понимать, что вирус не лечится антибиотиками, так как они являются антибактериальными, а не противовирусными препаратами и назначаются только при осложнениях COVID-пневмонии. Использование гормональных препаратов оправдано только при среднетяжелом течении болезни в условиях стационара, а кроверазжижающие препараты без контроля врача могут вызвать неконтролируемое кровотечение.

В случае лечения пациента на дому необходимо тщательно придерживаться назначений врача, не используя самостоятельно назначенных себе препаратов, с симптоматическими целями самостоятельно можно использовать стандартное лечение ОРВИ: обильное питье, постельный режим, жаропонижающие при температуре выше 38,5 °С.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также: