Вирусы в борьбе с насекомыми

Обновлено: 25.04.2024

Биопестициды - пестициды, полученные из объектов природного происхождения, таких как: микроорганизмы, растения, животные и минералы. Биопестициды в своё время делятся на 3 группы:

. Микробиологические препараты на основе микроорганизмов (бактерий, грибов, вирусов и простейших) и продуктов их жизнедеятельности. Более чем 50% в этой группе составляют препараты на основе бактерии Bacillus thuringiensis.

. Препараты из растений, экстрактов из растений и прочих природных субстратов. Их пестицидное действие обусловлено наличием в них специфических биологически активных веществ.

. Феромоны - препараты на основе природных соединений, не оказывающих токсического действия на вредные организмы, а влияющих только на их поведение. Обычно используются в виде приманок и ловушек для вредных насекомых. Но так же можно выделить ещё одну группу биологических средств защиты растений - это естественные хищники, но они всё таки не относятся к пестицидам.

По сравнению с химическими пестицидами, для биопестицидов характерны: меньшая токсичность, для нецелевых видов, высокая избирательность действий на вредные организмы, ну и так же отсутствие остаточных количеств в природе.

Использование микроорганизмов в качестве биопестицидов - сравнительно новое направление биотехнологии, но уже имеет существенные достижения.

На данный момент вирусы, грибы, бактерии, находят все больше применяются в качестве промышленных биопестицидов. Технология производства этих препаратов очень различна, как различна природа и физиологические особенности микроорганизмов - продуцентов. Имеются универсальные требования, предъявляемые к биопестицидам.

Основными среди них являются:

и высокая эффективность действия и селективность,

безопасность для полезных представителей флоры, фауны и человека,

длительная сохранность и удобство применения,

хорошая прилипаемость и смачиваемость.

В настоящее время для защиты животных и растений от грызунов и насекомых применяются, помимо антибиотиков, около 51 микробных препаратов, которые относят к трем группам - это бактериальные, грибные и вирусные препараты.

Различают следующие биологические средства:

Бактериальные препараты

На данный момент описано свыше 80 видов бактерий, которые инфицируют насекомых. Большинство их принадлежит к семействам Pseudomonadaceae, Enterobacteriaceae, Lactobacillaceae, Micrococcaceae, Bacillaceae. Большая часть промышленных штаммов относится к роду Bacillus, и основная масса препаратов (свыше 80%) изготовлена на основе Bacillus thuringiensis (Bt), имеющих свыше 22 серотипов. Штаммы Bt используются для борьбы с разнообразными вредителями - комарами, мошкой, гусеницами. В 1915 году впервые Bt была выделена Берлинером из крупых гусениц мельничной огневки. Штаммы Bacillus thuringiensis, помимо образования спор, которые когда попадали внутрь насекомого и вызывали септицемию, синтезировали также ряд экзо- и эндотоксинов. Привыкание и иммунитет к действию этих препаратов не отмечается у чувствительных видов насекомых. При проникновении в кишечник достаточной дозы этих соединений наступает 100-процентная гибель вредителей.

Интактные кристаллы нетоксичны, но при попадании в пищеварительный тракт насекомых под воздействием щелочных протеаз разрушаются с образованием действующего токсина.

Препараты в основе которых присутствует Bt относят к токсинам кишечного действия. Обычными последствиями после их воздействия являются паралич кишечника, прекращение питания, развитие общего паралича и смерть насекомого. Кристаллы варьируют между различными серотипами и изолятами Bt и обладают широким спектром активности против различных насекомых.

Бактерии группы Bacillus thuringiensis эффективны в отношении около 400 видов насекомых, включая вредителей садов, леса, полей и виноградников; наибольший эффект от применения данных препаратов получают при борьбе с листогрызущими вредителями. Известно более 100 штаммов Bt, объединенных в 30 групп по серологическим и биохимическим признакам. Бактерии Bacillus thuringiensis продуцируют специфические кристалловидные токсины, которые обладают большой энтомоцидной активностью. В процессе споруляции внутри клеток с помощью обычной микроскопии обнаруживают живые препараты бактерий, которые часто называют эндотоксинами. Когда заканчивается процесс спорообразования, токсины в свободном виде выделяются в среду. Форма кристаллов - ромбовидная (тетрагональная). Величина кристаллов чаще все зависит от вида культур бактерий и варьируется в интервале 1-3 мкм. Энтомоцидные кристаллы - это вещества белковой природы, в составе которых присутствуют 18 аминокислот. Этот белок - термолабильный, при 60°С он разрушается.

Первый отечественный препарат, получений на основе Вас. thuringiensis var. dalleriae, - энтобактерин. Применяются препараты путем опрыскивания растений суспензией из расчета 1- 3 кг/га для овощных и 3-5 кг/га для садовых культур с использованием наземных и авиационных опрыскивателей.

Дендробациллин - это препарат для защиты леса от сибирского шелкопряда на основе Вас. thuringiensis var. dendrolimus. Бактерию выделили из гусеницы сибирского шелкопряда. Она наносит значительный вред хвойным лесам.

БИП - биологический инсектицидный препарат, который изготавливается в виде сухого порошка и пасты на основе Вас. thuringiensis var Darmstadiensis.

Он эффективен против плодовых вредителей (от шелкопрядов, яблочной и плодовой молей, пядениц, листоверток,) и овощных культур (молей, белянок).

Бактулоцид является бактерией, на основе которой создали этот препарат. Она была выделена из водоема и отнесена к группе Bt Н14. Бактулоцид выпускается в виде сухого порошка с титром спор около 90 млрд./г и содержит такое же количество кристаллов. Его применяют в жидком виде разбрызгиванием по поверхности водоема. Доза в зависимости от характера водоема и вида комаров варьирует от 0,5 до 3,0 кг/га водной поверхности. Кристаллический эндотоксин бактулоцида высокотоксичен для личинок комаров и мошек, но совершенно безопасен для других насекомых и гидробионтов, обитающих в одном водоеме с комарами.

Интенсивно проводится во многих странах широкая разработка новых препаратов на основе Bt. Поиск осложняется нестабильностью штаммов-продуцентов. До настоящего времени мало изучены вопросы контагиозности энтомопатогенных бактерий и возможности эпизоотологического способа их использования.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!


Пестицид – вещество (или смесь веществ) химического либо биологического происхождения, предназначенное для уничтожения вредных насекомых, грызунов, сорняков, возбудителей болезней растений и животных, а также используемое в качестве дефолианта, десиканта и регулятора роста. [6]

Содержание:

Пестициды – общепринятое в мировой практике собирательное название химических средств защиты растений, состоящее из двух слов – pest – вредитель и cide – сокращать (смысловой перевод – вредсокращающие средства).

Пестицид - Использование пестицида

Использование пестицида

Пестицид - Использование пестицида

Ирландский фермер опрыскивает картофельное поле фунгицидами для предотвращения вспышки фитофтороза.

Ранее пестициды именовались ядохимикатами.

Пестициды используются для уничтожения либо прекращения развития насекомых, кле­щей, млекопитающих (грызунов), бактерий, вирусов, спор грибов, вредной растительности и других живых организмов, наносящих ущерб растениеводству и животноводству и вызывающих ухудшение качества сельскохозяйственной продукции, материалов и изделий. Также они применяются для борьбы с па­разитическими организмами и переносчиками опасных заболеваний человека. [9][4]

История

Уже на заре развития земледелия человек столкнулся с проблемой вредителей. По мере развития растениеводства эта проблема приобретала все большее значение. Увеличение площади земель, отводимых под возделываемые растения, появление монокультур и некоторые другие процессы привели к такому возрастанию численности вредителей, что не обращать на это внимания стало невозможным. Несомненно, что одними из первых вредных организмов, с которыми имел дело человек, были насекомые. Наряду с агротехническими и организационно-хозяйственными мероприятиями, земледелец применял ручной сбор вредителей, отлов их на различные приманки, уничтожение насекомых с помощью хищных животных и различных ядовитых веществ. [7]

До нашей эры

В качестве пестицидов химические вещества использовались еще во времена древнейших цивилизаций: в Греции и Риме. В "Одиссее", в 22 песне, Гомер в связи с использованием серы для обработки зданий и прилегающей территории употребляет современное понятие – окуривание (фумигация), и называет серу "очищающей" (дезинфекция). За 400 лет до н. э. Демокрит рекомендовал опрыскивать растения чистым настоем маслин (олив) без соли для предотвращения гниения и поражения насекомыми. [2] Он же предложил обрабатывать се­мена соком заячьей капусты: это растение богато дубильными ве­ществами и органическими кислотами, которые отрицательно действуют на возбудителей болезней.

Пестицид - Убийца моли

Убийца моли

Пестицид - Убийца моли

Инсектицид, содержащий 5% Дихлордифенилтрихлорметилметана (ДДТ), самого революционного инсектицида прошлого столетия.

Авиценна (Абу Али ибн Сина) в борьбе с вредными насекомыми предлагал использовать такие средства, как полынь, мирт, листья олеандра, шишки кипариса и др. Плиний Старший в качестве инсектицида давал совет применять мышьяк, а также упоминал об использовании соды и оливкового масла для протравливания семян бобовых. [10]

Конец средневековья

Более подробные сведения о методах химической борьбы с болезнями растений и вредителями встречаются в конце XVII в. К этому периоду относятся некоторые рекомендации по использованию инсектицидных препаратов, полученных из ядовитых растений.

Французский ученый Риливье де Сер рекомендовал перед посевом обеззара­живать семена мочой, где действующим началом является аммиак. Для лечения рака на деревьях Паркинсон в 1629 году советовал применять мочевину. В 1637 г. Ремнент в Великобритании предложил обеззаражива­ние зерна, не назвав препарата. Как отмечает Хорсфолл (1948 г.), обработка, вероятно, проводилась раствором хлорида натрия. В середине XVIII в. для протравливания семян начали приме­нять препараты меди, мышьяка и ртути, которые стали представителями первого поколения пестицидов. [1]

Современная история

Ко второму поколению пести­цидов (первая половина XX в.) причислены собственно препарат ДДТ и другие хлорсодержащие соединения, а также фосфорсодержа­щие инсектициды (фосфорорганические соединения) и карбаматы, успешно применяемые в борьбе с вредителями. Среди препаратов для борьбы с болезнями сле­дует отметить органические соединения ртути, тио-, дитиокарбаматы и другие соединения. Величайшим открытием в об­ласти защиты растений от сорняков стал синтез препаратов группы 2,4-Д.

Третье поколение

химических средств защиты растении ха­рактеризуется расширением ассортимента применяемых препара­тов (синтетические пиретроиды, производные сульфонилмочевины, азолы и др.), производством комбинированных пестицидов, химических соединений для борьбы с нематодами, кле­щами и другими группами вредных организмов. [1]

Список современных групп и классов пестицидов находится в разделе Пестициды.


Биологические средства защиты растений, в отличие от химических, представляют собой живые объекты или естественные биологически высокоактивные химические соединения, синтезируемые живыми организмами.

Содержание:

Различают следующие биологические средства:

Бактериальные препараты

Наиболее широкое практическое применение в борьбе с вредными насекомыми имеют споровые бактерии. В настоящее время разрешены к применению две высоковирулентные споровые бактериальные культуры, используемые для приготовления эффективных биопрепаратов.

Бактериальные инсектициды

Бактериальные препараты, относящиеся к инсектицидам нового поколения, эффективны в отношении порядка 400 видов насекомых, включая вредителей полей, садов, леса и виноградников. [4]

В данный момент в борьбе с вредителями сада и леса наиболее широко используются биопрепараты, созданные на основе кристаллообразующих бактерий из групп Bacillus thuringiensis, var. Thuringiensis и Bacillus thuringiensis, var. kurstaki, а также Спиносад, являющийсяпродуктом ферментации природного почвенного организма. Спиносад высокоактивен, обладает ярко выраженным кишечно-контактным действием. [16] К гибели насекомых приводит нарушение передачи нервных импульсов и ингибирование никотин-ацетилхолиновых рецепторов. Защитное действие около двух недель. [24]

Действие на вредные организмы

Указанные бактерии, и их токсины, попадая с пищей в кишечный тракт насекомого, способны вызвать паралич, заболевания и гибель заразившихся особей из-за повреждения внутренних органов. При первичном инфицировании численность популяций значительно снижается. Повторного заражения особей от контакта с заболевшими не происходит. Действие препарата ограничено обработанными участками, и развития эпизоотий не наблюдается. Из-за своего замедленного действия бактериальные препараты по токсическому эффекту уступают химическим. Сразу после их применения у насекомых вредителей уменьшается активность питания. Их гибель отмечается на 3-5-е сутки после обработки и примерно на десятый день достигает максимума.

Биопрепараты обладают и выраженным последействием, проявляющимся в гибели фитофагов на поздних стадиях развития. [12] [1]

Существенным недостатком бактериальных препаратов является то, что бактерии группы thuringiensis не обладают высокой вирулентностью и контагиозностью для насекомых. Поэтому желаемый эффект получают только при первичном заражении корма. Вторичные заражения редки, поэтому бактерии не могут вызвать массовых и длительных эпизоотий, которые распространялись бы за пределы обработанных территорий. [17]

Вследствие слабого стартового действия применение микробиопрепаратов экономически оправдано при средней численности вредителей. [1]

Влияние факторов внешней среды

Препараты на основе бактерий проявляют эффективное действие только при высокой пищевой активности насекомого вредителя. Это наблюдается при температуре не ниже 16 ° С. [1] Эффективность бактериальных препаратов снижается под влиянием неблагоприятной погоды – затяжных дождей, смывающих препарат, ультрафиолетового излучения, частично инактивирующего бактерии, а также низкой температуры воздуха, ослабляющей активность питания вредителей. [3]

Токсичность

Токсичность у препаратов, изготовляемых из спор токсических бактерий, отсутствуют специфические запахи, они безвредны для человека, животных и полезных насекомых, безопасны для растений. Вследствие этих особенностей бактериальные препараты могут без опасений применяться перед снятием урожая, когда недопустимо использование химических средств. [17] [14]

Бактериальные родентициды

Специфическим возбудителем заболеваний мышевидных грызуновявляетсяштамм бактерий Исаченко Salmonella enteritidis, var. Issatschenko, 29/1. Препараты на его основе применяются в сельском хозяйстве и в целях медицинской, санитарной и бытовой дератизации.

Действие на вредные организмы

Препараты на основе Salmonella enteritidis, var. Issatschenko, 29/1 строго избирательны. Зараженное зерно, попадая в организм грызуна, вызывает развитие желудочно-кишечного заболевания. На 3-14 сутки зверьки погибают. Родентициды на основе штамма бактерий обеспечивают в популяции контактное перезаражение мышей (может происходить даже между разными видами). [21] [5][19]

Передачи инфекции от одного вида к другому способствуют не только посещение чужих нор и перемещение одними ходами, но и отсутствие межвидовых агрессивных отношений. [13] Бактерии, попадая в желудок, затем в кишечник, проникают в кровь, вызывая септицемию. Временное повышение активности грызунов (сильно спадающая на 3-5-е сутки) свидетельствует о начале брюшно­тифозной инфекции. У зверьков начинают слезиться глаза, шерсть становится взъерошенной, появляются вялость и плохой аппетит. Заболевание, как правило, продолжается до 1-ой недели. [2]

Резистентность

Токсичность

Человек

Родентициды на основе бактерий Исаченко не опасны для человека, в связи с строго селективной патогенностью. Но для осторожности не следует использовать их на птицефабриках, в детских и медицинских учреждениях, на организациях общественного питания. [2]

Бактериальные фунгициды

Также для борьбы с болезнями растений практический интерес представляет использование некоторых видов бактерий-антагонистов. Бактерии из рода Pseudomonas активны в подавлении развития возбудителей корневых гнилей и увядания растений. Бактерия Pseudomonas fluorescens продуцирует антибиотик пирролнитрин, активный против возбудителя болезни всходов хлопчатника.

Другие бактерии-антагонисты эффективны против фузариозной гнили кукурузы, ризоктониоза пшеницы, овса и ячменя, гнили корней моркови и других болезней. [3]

Штамм ризосферных бактерий Bacillus subtilis Ч-13 является иммунизирующим и лечащим фунгицидом. Образует вещества, подавляющие развитие фитопатогенов и стимулирующие рост растений. При поселении на корнях растений, Bacillus subtilis Ч-13, повышает их иммунитет и стрессоустойчивость. Активная колонизация корней растений бактериями способствует улучшению развития корневых волосков и их поглотительной способности. В связи с этим питательные элементы – азот, калий и фосфор более полно усваиваются растениями, что обеспечивает получение хорошего урожая. [8] [18][22][11][7]

Биоинсектициды на основе грибов

В настоящее время описано около тысячи видов грибов, обладающих антибиотическими и патогенными свойствами по отношению к различным вредителям и возбудителям болезней. [14]

Наибольшее распространение получили препараты на основе гриба Streptomyces avermitilis, именуемые Авермектинами.

В авермектинах действует не сам гриб Streptomyces avermitilis, а продукты его жизнедеятельности.

Также распространенным энтомопатогенным грибом является Metarhizium anisopliae Р-72. Он способен контролировать сотни видов насекомых из различных отрядов. [20]

Авермектины

Действие на вредные организмы

Авермектины, обладая контактным и системным действием, имеют сильно выраженные акарицидные свойства, вызывая гибель многих открыто живущих сосущих вредителей. Механизм их действия нейротоксинного типа. Действующие вещества приводят к торможению и блокированию передачи нервного импульса, что приводит к параличу, а затем и гибели многих видов клещей, насекомых и нематод.

Максимальное преобладание в популяциях вредителей наиболее уязвимых стадий (гусеницы младших возрастов, подвижные стадии клещей) является оптимальным сроком применения авермектинов. Их пролонгированное действие выражается в различных морфогенетических нарушениях у особей последующих генераций. Авермектины не имеют строгого овицидного действия, но их действие приводит к гибели личинок клещей и различных насекомых после их непосредственного отрождения из яиц. Инсектоакарициды Аверсектин С и Авертин-N помимо этого имеют и нематицидный эффект. Не уничтожая инвазионных личинок нематод, эти вещества как репелленты в течение длительного времени дезориентируют их в поисках корней растения-хозяина. [15]

Влияние факторов внешней среды

Действие на вредные организмы

Штамм гриба Metarhizium anisopliae Р-72 вызывает у насекомых токсикоз, следствием которого являются повреждения различных систем организма. Рост активности детоксицирующих ферментов приводит к снижению иммунитета, что вызывает быстрое развитие болезни насекомых. [9] [20]

Биофунгициды на основе грибов

Известны факты успешного применения грибов-антагонистов для подавления развития возбудителей болезней сельскохозяйственных культур. Грибы рода Trichoderma наиболее изучены в качестве антагонистов.

На их основе в настоящее время разрешены к использованию несколько препаратов. Эти грибы широко распространены в почве, они продуцируют активные антибиотики – глиотоксин, виридин, триходермин и другие, которые обладают антибактериальными и антигрибными свойствами. [3]

Кроме этого, антибиотическим комплексом, в основе которого лежит почвенный актиномицет Streptomyces fradiae, штамм ВНИ ИСХМ-53, является макролидный тилозиновый комплекс. Обладающий системным действием этот фунгицид, фитоплазмоцид и биологический бактерицид разрешен к применению в открытом и защищенном грунте против бактериальных заболеваний. [22] Обладает не только продолжительным защитным (более месяца), но и пролонгированным действием (1,5-4 месяца). Применение препаратана ранней стадии развития растений, повышенная температура, низкая освещенность могут способствовать проявлению фитотоксичности. [23]

Патогенные нематоды

В настоящее время широко используют нематод в качестве средства биологической защиты растений от насекомых – вредителей сельскохозяйственных культур. Жизненный цикл нематод в оптимальных условиях составляет один месяц, а в природе 1-2-4 года.


Вирусы насекомых - класс пестицидов, содержащих в качестве действующего вещества вирусы, вызывающие болезни насекомых. Вирусы являются простейшими неклеточными формами жизни, которые паразитируют в клетках хозяина на молекулярно-генетическом аппарате.

Содержание:

Введение

Вирусы насекомых высокоспецифичны и безопасны для человека и сельскохозяйственных животных, не загрязняют среды обитания. Их характеризует более низкая норма применения, по сравнению с другими биологическими средствами защиты растений.

Вирусы насекомых, как и другие вирусы, могут развиваться только в клетках живых организмов, поражая их цитоплазму или ядро. В соответствии с этим различают ядерные и цитоплазменные вирусы. Наибольший интерес для биологического способа борьбы имеют три группы вирусов: вирусы ядерного и цитоплазменного полиэдрозов и вирусы гранулеза.

Бакуловирусы могут быть использованы в качестве биоинсектицидов против значительного количества вредных видов благодаря их высокой вирулентности, специфичности и пролонгированной активности за счет эпизоотий. [4] [8]

Также можно ставить задачу не полного уничтожения вредителя, а только уменьшения его численности до экономически неопасного уровня. Достаточно при этом одной вирусной обработки, поскольку в популяции вредителя устанавливается равновесие между насекомым и вирусом, которое может сохраняться очень продолжительное время (несколько лет). [7]

Вирусы насекомых - Яблонная плодожерка

Яблонная плодожерка

Вирусы насекомых - Яблонная плодожерка

История

Первые описания вирусных болезней насекомых (гусениц тутового шелкопряда) появились в литературе в середине девятнадцатого столетия. Однако еще в течение многих последующих десятилетий вирусные заболевания смешивали с бактериальными, протозойными и другими инфекционными болезнями, так как в то время не было ничего известно даже о самом существовании вирусов.

Вирусы были открыты русским ученым Д. И. Ивановским в 1892 году при изучении мозаичной болезни табака. [8]

Сознательное использование вирусов началось в 40-х годах ХХ века, когда Э.Штейнхауз (1945г.) впервые применил полиэдроз против люцерновой желтушки. Такая обработка показала высокую эффективность. [7]

В Калифорнии начались широкие испытания вирусных гранулезов и ядерных полиэдрозов против листовертки, люцерновой желтушки, репной белянки и прочих вредителей.

В России О.И.Швецова в 1954 году одна из первых обратила внимание на необходимость применения вирусов. Несколько позднее с помощью обработки яйцекладок вредителя вирусной суспензией ядерного полиэдроза были проведены успешные работы в лесах по снижению численности непарного шелкопряда. На Международном энтомологическом конгрессе в Москве в 1968 году два доклада сообщали об удачном применении гранул капустной белянки в Прибалтике и гранул озимой совки в Узбекистане. Использование вирусов в сельском хозяйстве в дальнейшем стало расширяться. Из описания свойств бакуловирусов насекомых становится ясным, почему из многочисленных представителей существующих в природе вирусов насекомых были взяты на вооружение именно эти вирусы: они безвредны для человека, полезных насекомых, растений и теплокровных животных, накапливаются в теле насекомого (до 20% от сухого веса), обладают достаточной специфичностью и являются естественными членами биоценозов. [8]

В настоящее время человечеству известны многие вирусы, которые вызывают заболевания различных растений, животных и человека. К 70 годам прошлого столетия для насекомых наибольшее количество вирусных болезней (примерно 200) было известно среди чешуекрылых. Заболевания, вызываемые этими мельчайшими возбудителями, обнаружены также у 20 видов перепончатокрылых, у 7 видов двукрылых и 1 вида жесткокрылых. [8]

Вирусы насекомых - Полиэдр непарного шелкопряда

Полиэдр непарного шелкопряда

Вирусы насекомых - Полиэдр непарного шелкопряда

Ультратонкий срез через полиэдр Непарного шелкопряда. Х 37 000. Видны палочковидные вирусные частицы.

Общие сведения

Вирусы насекомых или энтомопатогенные вирусы – узкоспециализированная группа клеточных паразитов. Они приспособлены только к насекомым и имеют свойства, отличающие их от других групп вирусов. Главное свойство большинства вирусов насекомых – это способность образования в процессе развития телец-включений (инклюзий) в виде белкового матрикса, где заключены зрелые вирионы – носители инфекции. Вирион является конечной стадией развития вируса, главной вирусной субстанцией. Он содержит генетический материал в виде нуклеиновых кислот – однонитчатой РНК и двуспиральной ДНК и передает новому вирусному поколению генетическую информацию.

Вирионы могут быть прямоугольной, сферической, изометрической или палочковидной формы, они окружены капсидами – 1 или 2-мя белковыми оболочками. Форма вириона – один из критериев, которые используются в классификации вирусов. [5]

Инклюзии – белковые тельца-включения. Они могут иметь форму полиэдров – многогранников или гранул – овальную форму. Отдельные виды вирусов инклюзий не образуют. [5]

Цитоплазма или ядра клеток в организме хозяина могут быть местом репликации вируса, различные ткани и органы – местом локализации. Тканевый тропизм и форма инклюзий тоже являются критериями, по которым классифицируют вирусы и диагностируют вирусные болезни. [5]

Гранулы и полиэдры, где заключены вирионы, надежно защищают последних от внешних неблагоприятных факторов и способствуют распространению и длительному сохранению вирусов. В полиэдрах вирионы расположены одиночно или пучками; в гранулах, обычно, вирион только один. Сами гранулы и полиэдры устойчивы к механическим, температурным воздействиям, в воде не растворяются, находясь вне организма хозяина, сохраняют долгое время свои физико-химические свойства. [5]

В зависимости от локализации инклюзий и их формы вирусные болезни называют гранулезами или полиэдрозами. Если развитие вируса происходит в ядрах клеток различных тканей и органов насекомого – заболевание называется ядерным полиэдрозом общего типа. При развитии вируса в ядрах клеток эпителия средней кишки возникает ядерный полиэдроз кишечного типа, при репликации в цитоплазме клеток хозяина – цитоплазматический полиэдроз. Названия прочих вирусных болезней основываются на других признаках. К примеру радужные болезни характеризуются тем, что в процессе развития вирионов образуются паракристаллические скопления. Тут возникает дифракция видимого света, которая дает эффект радужного свечения пораженных тканей насекомого. [5]

Вирусы полиэдрозов в покоящемся состоянии заключены в особые белковые образования, внутриклеточные многогранные включения – полиэдры. Число граней и размеры полиэдров различны. Бывают полиэдры, имеющие форму тетраэдров, гексаэдров, ромбододекаэдров и др. Размеры полиэдров достаточно велики (0,5-15 мкм), поэтому их можно рассмотреть с помощью светового микроскопа. Полиэдры могут быть различной формы у близких видов насекомых и одинаковыми у отдаленных видов.

Многочисленные вирусные частицы, заключенные в полиэдрах, имеют палочковидную форму у возбудителей ядерного полиэдроза и округленно-овальную – у возбудителей цитоплазменного полиэдроза.

Вирусы цитоплазменного полиэдроза в большинстве своем менее вирулентны и менее специфичны, чем вирусы ядерного полиэдроза и гранулеза.

Факторы внешней среды

Вирусные частицы весьма чувствительны к внешним воздействиям и не могут долго сохраняться вне клетки. Однако, будучи заключенными в защитную белковую оболочку (полиэдр или гранулу), вирусы способны сохранять свою активность в природных условиях на протяжении многих лет. [8]

Действие на вредные организмы

В зависимости от времени пребывания вируса в организме насекомого и популяции их взаимодействие может быть двух типов:

  • вирус недолго находится в организме, вызывая, как правило, острый инфекционный процесс с коротким инкубационным периодом. Насекомое погибает. Из погибших особей вирус попадает в окружающую среду, распространяется в популяции хозяина и заражает других восприимчивых особей. Надежно защищенный полиэдрами или гранулами, вирус может сохраняться в биотопе месяцами или годами, пока снова не попадет в организм насекомого; [5]
  • долгое пребывание в организме и в популяции (персистенция). Вирус неактивен, находится в так называемой латентной форме, в популяции передается от родителей к потомству. Механизм передачи относительно сложный. [5]

Латентный вирус может долго циркулировать в популяции насекомых до тех пор пока не будет активирован стрессовыми для хозяина факторами (аномальная погода, чаще всего засуха, питание неподходящим кормом, голод, другие инфекции, борьба за пространство и пр.). Тогда латентная форма вируса, которая существовала в клетках хозяина в виде субвирусных структур, становится активной, развивается эпизоотия, насекомые массово погибают, затем вспышка инфекции затухает. [5]

По этой схеме чаще всего у насекомых развиваются ядерные полиэдрозы кишечного и общего типов. Болезнью поражаются личиночные фазы развития. При попадании вируса в кишечник гусениц вместе с кормом происходит заражение. Контактным способом инфекция не передается. Вирус попадает в окружающую среду при разложении погибших в результате болезни особей. Последующему распространению вируса способствуют абиотические факторы (ветер, дождь, миграция зараженных насекомых и разнос инфекции энтомофагами (тахинами, саркофагидами, наездниками), грызунами и птицами, поедающими больных гусениц. Вне организма вирус активен даже при неблагоприятных внешних условиях – сухость, влажность, низкие температуры не оказывают на них воздействия. Однако высокие температуры и ультрафиолетовое солнечное излучение солнца инактивируют вирус. [5]

Механизм действия

Белок вирусов ядерного полиэдроза, заключающий в себе вирионы, в пищеварительном тракте разрушается под действием щелочной среды и протеазы кишечника. Вирионы высвобождаются и начинают воздействовать на мембраны клеток насекомых. На самых ранних этапах инфекционного процесса, примерно через 2 ч после поглощения полиэдров насекомыми, высвобожденные вирионы взаимодействуют с микроворсинками цилиндрических клеток эпителия среднего отдела кишечника. Происходит адсорбция микроорганизмов на мембране микроворсинок. Внешняя мембрана вириона после лектин-углеводного узнавания сливается с мембраной микроворсинок, и вирусы с внутренней оболочкой (нуклеокапсиды) проскальзывают внутрь микроворсинок, а затем проникают в клетки кишечника и других тканей и органов. Из нуклеокапсида высвобождается ДНК, которая затем использует генетический аппарат хозяина для воспроизводства вируса. [1]

Применение

В настоящее время на территории РФ разрешены для применения следующие вирусы насекомых:

Токсикологические характеристики

Теплокровные

Вирусные биопестициды обладают специфической токсикологической активностью по отношению к целевым насекомым, безопасны для теплокровных, рыб, птиц и других полезных животных.

В почве

Вирусные биопестициды быстро подвергаются биологическому разложению. Обычно они более совместимы с окружающей средой, чем химические пестициды. [6]


биологических препаратов на основе вирусов

Технологические этапы производства

биологических препаратов на основе вирусов


Получение

Применение вирусных инфекций, как и других патогенов, связано с необходимостью накопления возбудителя. Как уже указывалось, вирусы могут жить и развиваться только в клетках живых организмов.

В настоящее время известны вирусы, существующие в виде многокомпонентных систем, в которых две или более различных частицы взаимодействуют при репликации вируса. Модификации вирусных частиц, не снижающие их инфекционности, могут иметь место в определенном хозяине или возникать в процессе выделения вируса. Очищенные вирусные препараты в большинстве случаев представляют собой смесь мутантов, даже если родительский штамм преобладает в препарате, или могут содержать неполные частицы, которые не обладают инфекционностью.

Описанное положение существенно облегчает работу, направленную на выявление новых видов энтомопатогенных вирусов, так как насекомые, погибшие от множественной инфекции, могут длительное время храниться в коллекции и впоследствии быть источником выделения вирусных штаммов, обладающих различными свойствами и патогенностью, в том числе, и для других видов насекомых. [2]

Для вирусов насекомых, используемых в качестве биологических инсектицидов, должны быть известны следующие основные характеристики вирионов (вирусных частиц):

  1. природа нуклеиновой кислоты (однонитчатая и двунитчатая) и ее молекулярный вес,
  2. симметрия капсида,
  3. наличие оболочки у нуклеокапсида или ее отсутствие, размеры нуклеокапсида,
  4. число капсомеров,
  5. погружены ли вирионы в кристаллический белковый матрикс и его характеристика,
  6. обладают ли вирионы антигенными свойствами,
  7. чувствительность к температуре,
  8. устойчивость.

Должно быть известно, как происходит репликация вируса: повреждаемые клетки и природа этих повреждений, место вирусной репликации (цитоплазма или ядро), верхние и нижние температуры развития. Должны быть описаны симптомы и диагноз болезни, специфичность вируса. [7]

Размножить вирусы на искусственных средах пока не удается. В связи с этим приходится собирать в природных условиях трупы погибших больных насекомых и в лабораторных условиях заражать здоровых насекомых. Иногда заражение производится в природе в местах их естественного размножения, а затем специалисты собирают больных особей и трупы. Для заражения насекомых обычно обрабатывают корм ранее полученным препаратом вируса. Приготовление препарата включает измельчение (растирание) трупов насекомых и последующую фильтрацию жидкости, а иногда и центрифугирование. Фильтрация и центрифугирование позволяют получить более чистый и концентрированный препарат.

При изготовлении суспензий для предварительных испытаний обычно ограничиваются измельчением погибших насекомых. Препараты, полученные указанными методами, используют для приготовления водных суспензий или дустов с каким-либо инертным наполнителем. [8]

Основные этапы производства биопрепаратов на основе вирусов представлены на схеме (Изображение). [5]

Данный метод предусматривает использование микроорганизмов в борьбе с растительноядными насекомыми. Микробиометод — один из наиболее перспективных методов биологической защиты от вредителей и болезней растений в городских условиях. При этом методе используют три группы микроорганизмов: энтомопатогенные вирусы, бактерии и грибы.
Энтомопатогенные вирусы часто являются виновниками гибели насекомых при вспышках их массового размножения. Выделено более 10 групп вирусов, вызывающих следующие заболевания насекомых: ядерный полиэдроз общего типа (рис. 8.4), ядерный полиэдроз кишечного типа, гранулез, цитоплазматический полиэдроз, оспа насекомых, болезнь радужности и некоторые другие.

Микробиологический метод борьбы с вредителями и болезнями


Для вирусов характерна способность расти и развиваться только в клетках живого организма, поэтому для производства препарата необходима налаженная линия выращивания насекомого-хозяина.
Наиболее хорошо изучены вирусы ядерного полиэдроза бабочек. Эти вирусы развиваются в ядрах клеток хозяина, а их вирионы заключены группами или поодиночке в белковые тельца (полиэдры). Вирусы обладают рядом особенностей: они способны долго сохраняться в природе вне хозяина, они высокоспецифичны и поражают только определенные виды насекомых, заражают хозяина через пищу (при контакте больных особей со здоровыми инфицирование не происходит), вирусы долго сохраняются в природе в латентном (неактивном) состоянии.
Для каждого вида насекомого создается свой вирусный препарат, который действует только на этот вид, поэтому в названии препарата всегда присутствует сокращенное название насекомого, вирин-ЭНШ (непарный шелкопряд), вирин-диприон (Diprion — сосновый пилильщик), вирин-КШ (кольчатый шелкопряд).
Энтомопатогенные бактерии в настоящее время имеют самое широкое применение в защите растений. Современные бактериальные препараты выпускаются на основе спор бактерии Bacillus thuringiensis (ВТ). В процессе споруляции образуются спора бактерии и токсический кристалл (эндотоксин). Попадая в кишечник насекомых с кормом, споры и кристаллы вызывают паралич кишечника, насекомые прекращают питаться, внутренние органы разрушаются. Тело погибших насекомых раздувается, покровы разрываются и вытекает жидкость бурого цвета с запахом гнили (рис. 8.5).

Микробиологический метод борьбы с вредителями и болезнями


Основные препараты разработаны на бактериальной основе: лепидоцид, дендробациллин, энтобактерин, битоксибациллин (БТБ), бикол, дипел.
Все выпускаемые биопрепараты стандартизированы по международному эталону. Для них указывается биологическая активность (BA) или эффективность препарата, которая выражается в количестве спор или кристаллов, вызывающих гибель 50 % опытных насекомых за определенное время. Этот показатель выражается индексом ЛД50, который переводят в международный стандарт ЕА/мг. Например, лепидоцид CK, БА-2000 ЕА/мг.
Энтомопатогенные грибы поражают насекомых на разных стадиях развития. Для борьбы с вредителями в зеленых насаждениях применяют препараты, изготовленные на основе факультативных патогенов из класса Несовершенные грибы родов Beauveria и Metlarrhizium. Энтомопатогенные грибы отличаются от бактерий тем, что они медленно растут и развиваются. Кроме того, мицелий грибов и их споры обладают меньшей жизнеспособностью, что определяет небольшие сроки сохранения грибных препаратов. К боверии чувствительны насекомые из отрядов Чешуекрылые, Перепончатокрылые, Жесткокрылые, Клопы и многие другие. Грибные патогены поражают все стадии развития насекомых, в том числе и покоящиеся, т.е. непитающиеся фазы, так как они могут проникать в тело насекомых через наружные покровы. Энтомопатогенные грибы, как и бактерии, выращивают на искусственных питательных средах. Из грибных препаратов наша промышленность выпускает боверин, вертициллин, метаризин (против щелкунов), микоафидин (против тлей).
Хищные нематоды, на основе нематобактериального комплекса Steinernema carpocapsae и бактерии Achromobacter nematophilus в нашей стране создан препарат немабакт. Это водная суспензия латентных личинок на пористом носителе (поролоне). В 1 г носителя содержится 3—5 млн нематод. Перед употреблением носитель высыпают в воду, в которую выходят нематоды. Используют препарат для борьбы с долгоносиками на декоративных растениях, в основном в оранжереях. Можно использовать его также против щелкунов, совок, стеклянниц, мух, обитающих во влажной среде.
Использование антагонистических связей организмов: против корневых гнилей ряда цветочных культур и саженцев древесных пород используют препарат триходермин. Он подавляет развитие корневой губки и возбудителей полегания и представляет собой живую культуру гриба Trichoderma lignorum в торфе. Внесение этого препарата вызывает оздоровление растений, основанное на антагонистическом взаимодействии триходермы и других почвенных организмов. Эффект ощутим начиная со второго года применения препарата.
На антагонистических взаимосвязях основано действие фитоспорина и бактериомицина.
Помимо перечисленных препаратов используют настои и отвары различных растений. Так, настой из перепревших листьев или сена, свежеприготовленный настой осота полевого высокоэффективны против мучнисторосяных грибов. Водные 10%-е настои чеснока посевного применяют в борьбе с фитофторозом.
Используется также посадка растений, выделяющих большое количество фитонцидов. Тагетес, календула и чеснок помогают в борьбе с фузариозом, а фитонциды, выделяемые корнями черемухи, желтой акации, черной смородины, оказывают токсическое воздействие на корневую губку.
Использование антибиотиков (хлортетрациклин, ауреомицин, окситетрациклин) в некоторых случаях снимает симптомы болезни и удлиняет латентный период в борьбе с такими микоплазмозами, как пролиферация смородины, желтуха астр и гладиолусов.
Высокой антагонистической активностью к возбудителям полегания обладают антибиотики, продуцируемые окаймленным, настоящим, дубовым, осиновым трутовиками. Антибиотики трихотецин, полимицин, стрептомицин, полиоксимицин применяют против мучнисторосяных грибов, возбудителей полегания сеянцев, фузариозов, ржавчины. В защите растений перспективно использование антибиотиков (тетрациклин, доксициклин) против вирусных болезней растений.
Использование сверхпаразитов (гиперпаразитов) также представляет большой интерес. Встречаются случаи, когда на паразитических цветковых растениях или на грибах ведут паразитический образ жизни другие организмы. Так, на можжевелояднике развивается несколько видов грибов и насекомых, вызывая его ослабление. Споры мучнисторосяных грибов поедают кокцинеллиды, и на них развиваются другие грибы (Ampelomyces), препятствующие образованию спороношений.
Использование биологического метода помогает избежать загрязнения окружающей среды и вредного воздействия химических пестицидов на организм человека. Ho, к сожалению, биологический метод довольно дорогостоящий и требует высокой квалификации от специалистов при его использовании.

Читайте также: