Влияние лучистой энергии на вирусы

Обновлено: 27.03.2024

Существуют различные формы лучистой энергии, характеризующиеся различными свойствами, силой и характером действия на микроорганизмы.

электромагнитные излучения с разной длиной волн: радиоволны, инфракрасные лучи, видимый свет, УФ, рентгеновское, гамма-излучение, корпускулярные излучения (альфа- и бета-частицы нейтрона, протона и другие ядерные частицы).

Рентгеновское, гамма- и корпускулярное относятся к ионизирующим излучениям.

*СВЧ-энергия – электромагнитные ультракороткие волны и микроволны с длиной волны от 10 м до нескольких мм при прохождении через среду вызывают в ней возникновение токов высокой и сверхвысокой частоты.

Причиной гибели при СВЧ-воздействии является повреждение клетки под влиянием высоких температур. СВЧ-энергия оказывает влияние на генетические признаки микроорганизмов, на изменение интенсивности деления клетки, активность некоторых ферментов, гемолитические свойства. Эффект воздействия сильно зависит от частоты колебаний и времени облучения. Метод нагрева с помощью СВЧ-энергии является перспективным способом тепловой обработки пищевых продуктов: варки, сушки, разогрева, выпечки, стерилизации и пастеризации.

* Ультрафиолетовые лучи с короткой длиной волны являются наиболее активной частью солнечного спектра. Вследствие присущей им высокой химической и биологической активности, лучи с длиной волны менее 400 нм вызывают инактивацию ферментов, коагуляцию белков, в результате чего наступает гибель клетки. Губительное действие прямого солнечного света на большинство микроорганизмов обусловлено повреждающим воздействием ультрафиолетовых лучей на ДНК клетки.

Репарация после воздействия УФЛ:

*В молекуле ДНК возникают тиминовые димеры, ингибирующие репликацию.

*Эти повреждения могут быть устранены с помощью фотореактивации – исправления поврежденного участка ДНК особым ферментом, расщепляющим тиминовые димеры и активируемым лучами синего света.

Особенно чувствительны к свету различные патогенные микроорганизмы и гнилостные бактерии рода Pseudomonas. Пигментные бактерии и дрожжи значительно устойчивее к ультрафиолетовому облучению. Наибольшей устойчивостью к действию ультрафиолетовых лучей обладают споры.

В природе существуют микроорганизмы, для жизнедеятельности которых ультрафиолетовые лучи необходимы, это фотосинтезирующие бактерии, которые, подобно зеленым растениям, используют солнечную энергию для синтеза веществ протоплазмы из углекислоты и воды.

Действие ультрафиолетовых лучей широко используют на практике для дезинфекции воздуха лечебных учреждений и заводских помещений, обеззараживания тары, поверхности оборудования, воды.

* Ионизирующая радиация, и в первую очередь гамма-лучи, рентгеновские лучи и ускоренные электроны способны вызывать процесс ионизации, т. е. превращать отдельные атомы и молекулы веществ в электрически заряженные частицы – ионы.

Под действием ионизирующей радиации происходит радиолиз воды, образование свободных радикалов и перекисей, которые активно вступают в химическое взаимодействие с другими веществами, происходит распад существовавших и возникновение новых веществ, изменяется течение физико-химических процессов.

Микроорганизмы более устойчивы к воздействию радиации, чем более высокоразвитые существа. Большие дозы радиоактивного воздействия, несомненно, губительно воздействуют на микробные клетки. Маленькие дозы, наоборот, способны вызвать мутации в клетки, что может привести к появлению новых признаков, например, таких как устойчивость микроорганизма к воздействию антибиотиков.

Наибольшей устойчивостью к радиации обладают микроорганизмы родов Deinococcus radiodurans, Shizosaccharomyces pombe, Boda marina, которые были выделены из воды атомных реакторов.

Воздействие излучений:

* РАДУРИЗАЦИЯ (лучевая пастеризация) частичное подавление микроорганизмов

* РАДИСИДАЦИЯ уничтожение определенных видов патогенных или токсигенных микроорганизмов

* РАДАППЕРТИЗАЦИЯ практически полное уничтожение м/о в облучаемом продукте (аналогично тепловой стерилизации)

* Ультразвуком принято называть механические колебания с частотами свыше 20000 колебаний в 1 с (20 кГц). С помощью ультразвуковых волн можно вызвать инактивацию ферментов, витаминов, токсинов, разрушить разнообразные материалы и вещества, многоклеточные и одноклеточные организмы. При этом происходит разрыв клеточных оболочек, разрушение клеток. Возникающие в этом процессе химически активные соединения и ионизация воды усугубляют бактерицидный эффект ультразвуковых волн.

Микрококки, споры бактерий отличаются повышенной устойчивостью к действию УЗ-волн. При помощи ультразвука можно осуществить стерилизацию различных жидкостей и даже пищевых продуктов. В последнем случае одновременно происходит их гомогенизация.

Кто-то ассоциирует ультрафиолет с солярием и шоколадным загаром, кто-то — с угрозой развития рака, а кто-то представляет яркие кадры из сериала "Эйфория". В этой статье мы хотим рассмотреть ультрафиолет под другим, наиболее актуальным для 2020 года углом — как помощника в борьбе с вирусами и бактериями.

Сегодня УФ-излучение признают самым эффективным способом обеззараживания воздуха и поверхностей. Многие крупные города даже закупили ультрафиолетовых роботов, которые объезжают общественные места: больницы, вокзалы, школы и т.д.

Давайте разбираться, почему ультрафиолет так эффективен в борьбе с вирусами и как это качество можно использовать в домашних условиях.

Ультрафиолет — это электромагнитные волны, более короткие, чем видимый свет. Его используют в медицине более двухсот лет — дезинфицирующее свойство излучения было открыто в 1892 году. В начале XX века изобрели кварцевые лампы, которыми пользуются в медицинских учреждениях и по сей день для лечения и дезинфекции.

Ультрафиолетовое излучение попадает в ДНК и РНК микроорганизмов — это повреждает их на генетическом уровне и лишает возможности размножаться.

В ДНК ультрафиолетовый квант света взаимодействует с тимином (одним из 4 нуклеотидов, которые образуют спираль основной молекулы жизни. После УФ-излучения находящиеся рядом тимины образуют димер — прочное соединение двух оснований в одно целое. Чем дольше ультрафиолет воздействует на ДНК, тем больше формируется димеров. Они копятся - это замедляет темпы размножения микроорганизмов, что приводит к вымиранию колонии бактерий.

При малой дозе УФ-облучения клетка ослабляется, при средней — мутирует, а при большой она может сразу погибнуть. В ртутных лампах, которые используют для дезинфекции помещений, 86 % излучения приходится на волны длиной 254 нм. Такой квант света наиболее сильно поглощается молекулами ДНК, чем вызывает их химические превращения.

Логично, что в период пандемии ультрафиолет начали использовать для предотвращения распространения вируса COVID-19. Стали проводить исследования, чтобы изучить влияние излучения на ДНК именно этого вируса. В сентябре 2020 года ученые университета Хиросимы выявили, что ультрафиолет с длиной волны 222 нм убивает 99,7% ДНК коронавирусных клеток (исследование доступно по ссылке) за 6 секунд.

Выбор длины волны именно 222 нм ученые объясняют тем, что такой квант света безопасен для человека — излучение 254нм может повредить кожу и глаза находящихся вблизи людей. Такая длина волны (254нм) используется в тех же кварцевых лампах — именно поэтому на время дезинфекции ими помещений необходимо выводить людей и животных. Тем не менее, такой волной уничтожить клетки коронавируса можно еще быстрее, чем в результатах исследования.

Кварцевые лампы нельзя использовать дома и в общественных местах, чтобы не навредить своему здоровью. Во-первых, при неправильном использовании они могут вызвать ожог кожи и глаз, а во-вторых, они выделяют ядовитый озон. Поэтому был придуман рециркулятор воздуха— прибор, в котором ультрафиолетовые лампы помещены в металлический корпус и не вредят окружающим. В него воздух поступает через вентилятор, обеззараживается в течение нескольких секунд и возвращается в помещение.

Чтобы не превратить защиту в угрозу, важно обращаться к проверенным производителям, требовать сертификат качества и техническую документацию.

Физические методы инактивации вирусов. Гамма-лучи в инактивации вирусов.

Наиболее распространенными физическими методами инактивации вирусов являются гамма- и ультрафиолетовые (УФ) лучи.
Гамма-лучи — вид ионизирующего излучения, обладающий большой проникающей способностью. В основе действия их лежат два эффекта: прямое и непрямое воздействие. Первое заключается в непосредственном поглощении энергии излучения биологическими молекулами. Наиболее уязвимыми мишенями являются пуриновые и пиримидиновые основания. Непрямое действие — влияние на объект активных свободных радикалов Н, ОН, Н02 и молекулярных продуктов, например, перекиси водорода, образующихся в среде вследствие радиолиза воды. Перенос энергии радикалов в растворе осуществляется путем диффузии. Действие радикалов может вызвать такие изменения в ДНК, как дезаминирование оснований, дегидроксилирование, разрыв связей между дезоксирибозой и основанием, разрывы нуклеотидных цепей, окисление дезоксирибозы.

В результате реакций, происходящих под влиянием прямого и непрямого действия излучения, возможны различные повреждения структуры нуклеиновых кислот вирусов: разрыв водородных связей, появление сшивок, двухцепочечных разрывов. Белковая оболочка под воздействием радиации повреждается незначительно.

Инактивирующее действие гамма-лучей изучали на различных вирусах: осповакцины, болезни Ауески, простого герпеса, ящура, гриппа, венесуэльского энцефаломиелита лошадей, бешенства, классической чумы свиней и др.

Установлено, что при воздействии гамма-лучей инфекционность вирусов теряется быстрее, чем антигенность. Так, при облучении вируса гриппа в дозе 30 кГр наблюдали полное разрушение инфекционности при сохранении гемагглютинирующей и нейраминидазной активности. Инфекционность вируса кори утрачивалась при дозе облучения 5 кГр, в то время как гемагглютинирующая активность — при 20 кГр. Гемагглютинирующая активность вирусов японского энцефалита, венесуэльского энцефаломиелита лошадей сохранялась в препаратах, в которых не обнаруживали инфекционный вирус при облучении в дозе 50—60 кГр. Аналогичную устойчивость к облучению обнаружил основной группоспецифический белок VP7 вируса катаральной лихорадки овец.
Инактивирующий эффект гамма-лучей зависит от влажности препарата, температуры, наличия защитных средств.

схема ПЦР

Установлено, что в водных растворах вирус инактивируется значительно быстрее, чем в сухих препаратах. Более высокая скорость инактивации вирусов в водных растворах по сравнению с сухими препаратами объясняется суммарным действием прямого и непрямого эффекта. При облучении вируса в сухих препаратах, ввиду отсутствия несвязанной воды, непрямое действие практически исключается. С повышением температуры при облучении возрастает радиочувствительность вируса, которую можно ослабить введением в среду различных веществ (гистидина, цистеина, альбумина, сыворотки, желатина и др.) Для инактивации вирусов Коксаки, гриппа и полиомиелита в среде Игла с 2% сыворотки требовалось увеличить дозу более чем в три раза по сравнению с облучением в воде.

Экспериментально доказана возможность применения гамма-лучей для приготовления антигенов и инактивированных вакцин против бешенства, гриппа, оспы, венесуэльского энцефаломиелита лошадей, гепатита В и других инфекций. Применение гамма-излучения позволяет одновременно инактивировать и стерелизовать готовый препарат.

Эффективность УФ-лучей определяется их проницаемостью и адсорбцией биологическими молекулами. Белки поглощают УФ-лучи в меньшей степени, чем нуклеиновые кислоты, и поэтому более устойчивы к их действию.

Ультрафиолетовое облучение вызывает изменения структуры нуклеиновых кислот, заключающиеся в образовании димеров между соседними пиримидиновыми основаниями, а также ковалентных связей между нуклеиновой кислотой и белковой оболочкой. Повреждения ДНК приводят к инактивации вируса герпеса.

Вызывая глубокие изменения в структуре нуклеиновых кислот вирусов, УФ-лучи не оказывают существенного влияния на белковую оболочку, вследствие этого инактивированные вирусы способны сохранять свою антигенную и иммуногенную активность.

Однако такие особенности УФ-излучения как трудность выбора и контроля оптимальной дозы, обеспечивающей инактивацию вируса с сохранением антигенных свойств, а также эффекты экранирования и фотореактивации затрудняют практическое получение безопасных инактивированных препаратов.

Основной причиной, вызывающей инактивацию вируса при нагревании, является нарушение структурной целостности его генома, вызванное разрывом и образованием внутримолекулярных связей в нуклеиновой кислоте.

Инактивированная нагреванием вакцина против вирусной геморрагической болезни кроликов оказалась достаточно иммуногенной. Она вызывала устойчивость к экспериментальному заражению на 5-90-й день после однократного введения.

В процессе получения вакцины против гепатита В из плазмы крови вирусоносителей инактивацию вируса проводили в два этапа: полуфабрикат прогревали при 103°С в течение 90 секунд, а затем инактивированный сорбированный нафосфате алюминия антиген прогревали при 65°С в течение 10 ч. При таком способе происходила инактивация вируса гепатита и сопутствующих вирусов, которые могли присутствовать в донорской крови.

К простым и доступным методам инактивации вирусов относится фотодинамическое воздействие некоторых красителей, таких как метиленовая синька, акридиновый оранжевый, толуидин синий, нейтральный красный и другие, к которым чувствительны многие вирусы. Наиболее вероятный механизм такой инактивации — изменение или отщепление гуанина без разрыва полинуклеотидной цепи геномов. Фотодинамическую инактивацию применяли при изготовлении экспериментальных образцов инактивированных препаратов против клещевого энцефалита, краснухи, болезни Ауески, классической чумы свиней и других вирусов. Обработка вируса Сендай родамином-В, бриллиантовым зеленым и фиолетовым Гофмана сопровождалась частичной модификацией РНК без изменения капсидных белков. Инактивированный препарат обладал высокой иммуногенностью.

Основные показатели качества инактивированных препаратов, предназначенных для профилактической вакцинации, — безопасность и высокая иммуногенность.
При оценке качества ряда инактивированных препаратов первостепенное значение приобретает контроль авирулентности, направленный на выявление оставшихся жизнеспособных вирионов. Считается, что чем опаснее возбудитель, тем надежнее должны быть условия инактивации и методы контроля ее эффективности. Степень безопасности инактивированных вакцин находится в неразрывной связи с чувствительностью тест-системы, по которой оценивают полноту инактивации вируса. В связи с этим разработка наиболее чувствительных и совершенных методов обнаружения минимальных количеств живого вируса в инактивированных препаратах имеет большое значение. Следует иметь в виду, что, несмотря на стремление достичь полной инактивации вирусных частиц, всегда остается статистическая вероятность того, что какая-то часть из них может выдержать соответствующую обработку. Риск существования очень небольших количеств остаточного инфекционного вируса повышается по мере увеличения масштабов применения вакцины.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Бактерицидное действие света. Действие света на кожу

В 1878 г. впервые было установлено, что под влиянием света развитие гноеродных бактерий или совершенно прекращается или задерживается. Прямой концентрированный свет в этом отношении- более эффективен, чем рассеянный. Исключительно важное значение по их бактерицидному действию имеют ультрафиолетовые лучи с длиной волны от 253 до 280 mu, а присоединенные к ним инфракрасные и красные лучи значительно усиливают это действие их.

Прямой солнечный свет убивает бактерии гораздо быстрее, чем рассеянный. Ультрафиолетовые лучи, издан на бактерийную клетку, оказывают непосредственное влияние на протоплазму и клеточный белок. Вначале ультрафиолетовые лучи вызывают раздражение, а затем и угнетение жизнедеятельности клеток. При большой дозе или длительном облучении наступает коагуляция (свертывание) белков и смерть бактерий.

Различают прямое бактерицидное действие света, которое используется в отношении поверхностно расположенных микробов (туберкулезная ткань), и непрямое бактерицидное действие света, которое проявляется благодаря изменению бактерицидных и иммунных свойств крови под влиянием освещения. При освещении ультрафиолетовыми лучами бактерицидные свойства крови повышаются.

Различные бактерии неодинаково чувствительны к свету. Чувствительность их к свету зависит от возраста, питательной среды, в которой они растут, состояния споруляции, температуры среды, в которой они находятся, и пр.

действие света на кожу

Действие света на кожу

Солнечный свет оказывает самое разнообразное действие на животный организм, вызывая в нем ряд ощущений и изменений. Интенсивность этих явлений непосредственно зависит от самого организма человека или от внешних условий, от количества и качества солнечной энергий, от методики облучения и т. д. Во всех подобных случаях происходит положительная или отрицательная ответная реакция организма.

При закаливании солнечными лучами чрезвычайно важное значение приобретает кожа. Через кожу с ее мощным рецепторным аппаратом внешние раздражители действуют на центральную нервную систему, а через нее и на все органы и ткани в человеческом организме.

Кожа — наружный покров организма, она является прежде всего границей между организмом и внешней средой и предохраняет организм от всевозможных вредных влияний: от пропитывания влагой, от высыхания, от проникновения газов, от давления, от потери тепла, от механических воздействий и т. д.

Сквозь ненарушенный (здоровый) покров кожи в организм совершенно не проникают микробы — возбудители болезней, в изобилии имеющиеся во внешней среде и на самой коже; Защитная роль кожи увеличивается благодаря ее придаткам: волосам, ногтям, железам; железы вырабатывают смазку для кожи, выделяют пот. Общая поверхность кожного покрова у человека равняется от 1,5 до 2 м2.

Рассматривая действие лучистой энергии на кожу, следует также принять во внимание сильно развитую сеть капилляров, которые способны вмещать около 30% всей крови, циркулирующей в организме. На долю кожи приходится около 60—80% всей теплоотдачи. Кроме того, кожа под действием физиотерапевтических факторов способна выделять продукты расщепления белков— гастаминоподобные вещества, которые влияют на глубоко лежащие органы и на тонус стенок сосудов.

Если принять во внимание, что кожа является тем местом, которое в первую очередь подвергается действию света, и что наиболее активная по своему действию ультрафиолетовая часть спектра полностью поглощается кожной поверхностью, а видимая и инфракрасная — в значительной степени, то станет очевидной исключительно важная роль кожи в деле восприятия и передачи организму энергии световых лучей.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: