Возбудитель антропонозной чумы это

Обновлено: 26.04.2024

Принципы микробиологической диагностики чумы включают бактериоскопические, бактериологические, аллергические и биологические методы. Материалом для исследований служат отделяемое бубонов, содержимое язв или других кожных поражений, мокрота и слизь из зева, кровь, фекалии и СМЖ.

Выделение возбудителя чумы

Все мероприятия проводят в специализированных лабораториях с соблюдением условий предохранения от лабораторного заражения (противочумные костюмы, защитные устройства и т.д.). Материал засевают на твёрдые питательные среды и, при необходимости, па жидкую среду накопления. Затем готовят мазки из изолированных колоний. Для экспресс-диагностики используют метод ускоренного роста на средах обогащения, а также ставят РИФ с мечеными AT (выявляет Y. pestis в различных объектах в течение первых 2 ч исследования).

* Биохимическую идентификацию возбудителя чумы проводят в соответствии с принципами, применяемыми в отношении прочих энтеробактерий. В соответствии со способностью ферментировать глицерин и углевод мелибиозу выделяют биовары antigua (+, -) medievalis (+, +) и orientalis (-, -). Первый биовар выделяют в Центральной Азии и Центральной Африке, второй — в Средней Азии и Иране, третий — повсеместно. Отечественная классификация выделяет подвиды pestis (основной подвид), altaica (алтайский подвид), caucasica (кавказский подвид), hissarica (гиссарский подвид) и udegeica (удэгейский подвид).

* Антигены чумной палочки идентифицируют в РА, РНГА, РП в стандартных агаровых пластинках, РНАТ, ИФА и др.

* Для проведения ускоренной диагностики чумы используют чумной бактериофаг. Его высокая специфичность и вирулентность для чумной палочки позволяют применять его для идентификации чумы путём внесения в исследуемый материал — о положительном результате свидетельствует образование негативных колоний бактериофага либо увеличение титра бактериофага в среде.

Диагностика чумы. Микробиологическая диагностика чумы. Выделение возбудителя чумы. Чумной бактериофаг. Биологическая проба

Биологическая проба при чуме

Её обычно проводят при сильной контаминации материала посторонней микрофлорой. Для пробы используют морских свинок, заражаемых накожно, подкожно или внутрибрюшинно. Выявление Аг возбудителя в тканях погибших животных проводят при помощи РИГА, ИФА или с использованием AT, меченных флюоресцеинами. При снижении вирулентности или применении малой заражающей дозы перед заражением животным вводят глкжокортикоиды, что позволяет ослабить защитные силы и ускорить получение результата.

Серологические исследования при чуме

AT в крови больных чумой выявляют посредством РНГА, ИФА и др.

Аллергическая проба при чуме

Для ретроспективной диагностики чумы ставят кожные пробы с пестином (белковый аллерген из культур возбудителя чумы).

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Эпидемия чумы. Эпизоотии чумы. Передача чумы человеку. Природные очаги чумы. Устойчивость возбудителя чумы.

Эпизоотии. В эпидемиологическом отношении чумы первое место занимают крысы (как самые распространённые и многочисленные грызуны), основную роль играют три вида — серая крыса-пасюк (Rattus norvegicus), чёрная крыса (R. rattus) и египетская крыса (R. alexandrinus).

Чумные эпизоотии среди крыс обычно предшествуют заболеваниям людей. В степных регионах (где крыс мало) ведущую роль играют суслики, сурки и песчанки; общий список диких грызунов включает около 240 видов и подвидов, не считая синантропных крыс и мышей.

Передача чумы человеку

Эпидемия чумы. Эпизоотии чумы. Передача чумы человеку. Природные очаги чумы. Устойчивость возбудителя чумы

Природные очаги чумы

Природные очаги чумы прочно связаны с ландшафтно-климатическими условиями, всем им свойственна определённая засушливость климата, приводящая к развитию биоценозов, характерных для пустынь, полупустынь, степей, саванн и высокогорных лугов. В РФ основные переносчики — суслики, песчанки и сурки (тарбаганы). В соответствии с этим на территории РФ выделяют следующие очаги.

• 5 очагов чумы сусликового типа (Северо-Западный Прикаспий, Междуречье Терека и Сунжи, При-эльбруссье, Междуречье Волги и Урала, Зауралье).

• 5 очагов чумы сусликового и сурчиного типа (Забайкальский, Горно-Алтайский, Тувинский, Тянь-Шаньский и Памиро-Алтайский).

• Волго-Уральский песчаночный очаг чумы.

Устойчивость возбудителя чумы

В мокроте возбудитель чумы может сохраняться до 10 сут, на одежде и белье — несколько недель, в трупах при низкой температуре окружающей среды — неопределённо долгое время. Возбудитель быстро погибает под воздействием солнца, высыхания и высоких температур, при 60 °С погибает за 1 ч, при кипячении — за несколько минут. Бактерии чувствительны к действию дезинфектантов.

Видео урок эпидемии чумы и их значение в истории

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.


Обзор

Автор
Редактор


Один монах, странствуя по белому свету, встретил Чуму, которая направлялась в его город.
— Ты куда это направляешься, Чума? — спросил он ее.
— Иду в твой родной город, — ответила она. — Мне нужно забрать там тысячу жизней.
Через некоторое время монах снова встретил Чуму на своем пути.
— Почему ты меня обманула тогда? — спросил он ее с укором. — Ты говорила, что должна забрать тысячу жизней, а забрала пять тысяч.
— Я тогда сказала тебе правду, — ответила Чума. — Я действительно забрала тысячу жизней. Остальные умерли от страха.

Жертвы чумы исчислялись сотнями тысяч и даже миллионами человек, вымирали города, становились безлюдными целые области, и ужас пандемий чумы затмевал ужасы всех войн, какие знала история человечества. Целые тысячелетия люди не понимали, что является источником заболевания [2].

Библия — одно из древнейших дошедших до нас свидетельств эпидемий чумы (1 книга Царств, глава 5; 4 книга Царств, глава 19, стихи 35–36). В мировой истории отмечают три пандемии этой болезни:

Бубонная форма чумы является наиболее распространенной формой заболевания и при отсутствии лечения приводит к гибели 40–60% заболевших. Легочная форма возникает либо как осложнение бубонной или септической форм, либо при вдыхании воздуха, зараженного возбудителем чумы. Если лечение не начинают в первые 24 часа после появления симптомов, смерть наступает через 48 часов [8].

В природе чумной микроб встречается практически на всех континентах, исключая Австралию, Антарктиду, а также Арктику, что обусловливает ежегодно регистрируемые случаи этой болезни. Стремительная эволюция микроорганизмов приводит к появлению популяций бактерий (штаммов), устойчивых к антибиотикам [9], что в случае с возбудителем чумы особенно опасно. Кроме того, этих бактерий могут использовать в качестве агента биотерроризма. Все вышесказанное объясняет необходимость изучения чумного микроба.

Возбудитель чумы Yersinia pestis — самая опасная бактерия в мире [10]. Что делает ее столь смертоносной?

Факторы вирулентности, или вооружен и очень опасен

Со времен открытия возбудителя чумы в 1894 году французом Александром Йерсеном и японцем Китасато Сибасабуро ученые пытались выяснить, что определяет патогенность Y. рestis. В результате многолетней тяжелой и рискованной работы, которая продолжается и по сей день, выделили следующие факторы патогенности возбудителя:

  • белки внешней мембраны (Yersinia outer proteins — называемые Yop-белками, эффекторными белками, или комплексом Yop-вирулона) [11];
  • комплекс области пигментации [12];
  • активатор плазминогена [13];
  • капсульный антиген [14];
  • пили адгезии или pH6-антиген [15].

Белки внешней мембраны, или зачем возбудителю чумы шприц?

Схема действия системы секреции III типа

Рисунок 1. Схема действия системы секреции III типа.

Комплекс области пигментации, или может ли стать потребность в чем-либо фактором патогенности?

Активатор плазминогена, или двуликий Янус

При вдыхании чумных микробов (и развитии легочной чумы) этот белок обеспечивает быстрое размножение бактерий в тканях легких и приводит к развитию молниеносной пневмонии и отеку легких, тогда как в отсутствии Pla инфекция не развивается в смертельную пневмонию. Установлено, что активатор плазминогена нарушает постоянство внутренней среды организма хозяина и блокирует иммунные реакции, направленные на уничтожение патогена [27].

Капсульный антиген, или скользкий тип этот возбудитель чумы

Бактерии окружены капсулой из слизистого вещества (фракция I, Fra1), которая препятствует поглощению и обезвреживанию Y. pestis иммунными клетками организма-хозяина в процессе фагоцитоза. На выявлении этого вещества-антигена основаны многие современные методы лабораторной диагностики чумы, оно входит в состав многих экспериментальных химических вакцин против чумы. Однако позднее обнаружили популяции бактерий, лишенные капсулы [28]. Кроме того, слизистая капсула есть у многих других микроорганизмов, например, возбудителя сибирской язвы, туляремии. Капсульное вещество иерсинии образуют при температуре 37 °С.

Антигены, схожие с рН6, были обнаружены у ряда возбудителей, вызывающих менее опасные болезни — кишечные инфекции (Y. pseudotuberculosis [31], Y. enterocolitica [32], Escherichia coli [8]).

Температурный фактор, или то, что действительно имеет значение

Необходимо заострить внимание на особой роли температуры в физиологии чумного микроба. Именно при температуре 37 °С у него повышаются питательные потребности [33] и синтезируются практически все известные детерминанты вирулентности (рис. 2) [34]. У других бактерий подобная зависимость выражена в меньшей степени, что позволяет говорить о ведущей роли температурного фактора в вирулентности возбудителя чумы [8].

Геном или все важное внутри

Помимо хромосомы у чумного микроба есть плазмиды — внехромосомные участки ДНК [38]. Большинство белковых факторов вирулентности закодированы на плазмидах: эффекторные белки на плазмиде pCad; капсула — pFra; активатор плазминогена — рPla (pPst, pPCP). Плазмиды pFra и рPla обнаружены только у Y. pestis (видоспецифические), pCad является общей с возбудителем псевдотуберкулеза (родоспецифическая) [20].

Заключение

В настоящее время продолжается работа по выявлению новых, еще не изученных маркеров вирулентности [39]. С использованием 2D-электрофореза, масс-спектрометрии, полногеномного секвенирования проводят сравнительный анализ отличающихся по вирулентности популяций чумного микроба для выявления различий в их белковых спектрах и геномных последовательностях. Ранее не известные белки и участки генома становятся объектом пристального внимания и изучения как потенциальные детерминанты вирулентности.

Таким образом, патогенность возбудителя чумы — это множественный (полидетерминантный) признак. Соединение многих факторов в единое целое создает страшную угрозу чумных эпидемий, с противостоянием которым, однако, прогрессивное человечество успешно справляется.


Новость

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Незнакомка в маске

Лики чумы

Возможно, преобладание какой-либо из форм чумы (преимущественное поражение того или иного органа) во время разных эпидемий связано не только с механизмами передачи бактерий, но и со свойствами конкретного штамма-возбудителя.

Решающей стала третья пандемия, разгоревшаяся в Китае в 1855 году. На разгадку самой страшной тайны были брошены все научные силы, изрядно к тому времени поокрепшие. И наконец в 1894 году исследования французского бактериолога Александра Йерсéна (Alexandre Yersin) и японского врача Сибасабуро Китасато (Shibasaburō Kitasato), проводимые независимо друг от друга в Гонконге, принесли долгожданные результаты. Исследуя человеческий патологический материал и трупы грызунов, Китасато и Йерсен выделили и описали коккобациллы, предположительно вызывающие чуму. И если результаты Йерсена нареканий не вызвали, то японскому бактериологу изрядно подпортили репутацию (и вызвали бесконечные споры относительно приоритета в открытии чумной палочки) противоречия в описании возбудителя, судя по всему, объясняемые загрязнением образцов оппортунистами-пневмококками [4].

Жертва мутации

Однако этого приобретения Y. pestis было недостаточно для того, чтобы научиться вызывать опаснейшую системную инфекцию (септическую форму чумы). Оказалось, что для подобного усовершенствования потребовалась всего одна (!) аминокислотная замена в белке Pla — I259T. Эта замена оптимизировала протеолитическую активность белка и существенно повысила инвазивный потенциал бактерий при развитии бубонной чумы. Таким образом, ученые полагают, что первым делом бактерия приобрела свойства легочного патогена, провокатора вспышек легочной чумы, а позже в результате дополнительной мутации появились еще более опасные штаммы, вызывающие пандемии легочно-септической и бубонно-септической чумы [6].

Тем не менее среди всех минусов Y. pestis ученые находят и плюсы ее контакта с людьми. В 2014 году в журнале PLoS ONE была опубликована статья Шэрон де Витте из Университета Южной Каролины, в которой говорилось, что люди, пережившие пандемию чумы, стали обладателями более крепкого здоровья. Ученые исследовали останки людей, живших до, во время и после чумы, обращая особое внимание на причины смерти и состояние их костей. Результаты показали, что пережившие эпидемию, а также их потомки, доживали в среднем до 75 лет и обладали завидным иммунитетом.

Немного о Pla

Предотвращение апоптоза протеазой Pla

Почему же протеаза Pla относится к факторам вирулентности, то есть как именно она помогла чумной палочке, которая и так может похвастать богатым арсеналом приспособлений для процветания в млекопитающих и трансмиссии блохами? Одна из обязанностей Pla — активация плазминогена: образующийся при этом плазмин разрушает фибриновые сгустки, что важно, например, для распространения бактерии из бубонов по организму.

Недавно была установлена связь развития первичной легочной инфекции с механизмом, связанным с инактивацией апоптотической сигнальной молекулы под названием Fas-лиганд (FasL). Роль FasL в клетке определяется его способностью запускать процесс апоптоза. У этого белка, пронизывающего мембрану активированных цитотоксических Т-лимфоцитов и эпителиальных клеток дыхательных путей, есть внеклеточный домен, который связывается с рецептором FasR на поверхности других клеток (преимущественно лимфоцитов, а также гепатоцитов, раковых и некоторых других), что посредством активации протеаз caspase-8 и caspase-3/7 запускает апоптоз. Так поддерживается гомеостаз иммуноцитов, предотвращаются аутоиммунные процессы и уничтожаются клетки, экспрессирующие чужеродные антигены.

Проводимые на мышах эксперименты показали следующее: бактерии с нормальной протеазой Pla способствовали снижению количества FasL, что приводило к быстрой колонизации легких, в то время как йерсинии с инактивированной Pla размножались медленнее. Описанный механизм подавления иммунного ответа, по мнению ученых, может использоваться и другими патогенами, в особенности вызывающими инфекции дыхательный путей. А это, в свою очередь, открывает новые перспективы в борьбе с такими заболеваниями: можно подумать, например, над разработкой ингибиторов Pla или введением дополнительных молекул FasL [7].

Блоха на крысе

Блохи — прожорливые кровососы. Питание особи может длиться от одной минуты до нескольких часов; некоторые виды умудряются заполнить свои желудки до отказа — так, что даже не успевают переварить свой кровавый обед. Возможно, именно этот факт сыграл для насекомых злую шутку, но пришелся как нельзя более кстати Y. pestis.

Передача возбудителя чумы от грызунов человеку

Крысы Rattus norvegicus

Рисунок 4. Крысы (Rattus norvegicus) являются переносчиками блох, а следовательно, и чумной палочки. Рисунок из [12].


Новость

Бактерия Yersinia pestis при увеличении 200×. Переносящаяся блохами, она нанесла человечеству в свое время многомиллионный урон.

Автор
Редакторы


Изучать древних патогенов важно для того, чтобы понимать, какими извилистыми путями шагает их эволюция, и каких сюрпризов стоит ожидать от наших микроскопических врагов в будущем. Современные технологии секвенирования и совершенствование методов манипуляции с ДНК позволили коллективу ученых из Канады, США и Германии реконструировать геном возбудителя европейской эпидемии бубонной чумы XIV века. Генетический материал удалось получить из останков жертв эпидемии, захороненных в Восточном Смитфилде — районе современного Лондона. Статью о первом секвенированном геноме древней патогенной бактерии опубликовал в октябре этого года журнал Nature [1].

Исследовать древнюю ДНК непросто. Во-первых, она довольно плохого качества, поскольку деградирует от смены температур, влажности и времени. Приходится иметь дело с фрагментированными и поперечно-сшитыми молекулами. Во-вторых, не всегда легко доказать множеству скептиков, что выделил именно то, что нужно для каких бы то ни было громких выводов. В случае с Yersinia pestis споров было много. Некоторые считали, что дошедшие до нас сведения об эпидемии указывают на то, что это была не чума, а скорее какой-то вариант геморрагической лихорадки типа той, что вызывает вирус Эбола [2]. В 2000 году коллектив под руководством Дидье Рауля (Didier Raoult) опубликовал результаты работы, в ходе которой была выделена ДНК из зубов людей, погребенных в одном из мест массового захоронения жертв эпидемии XIV века [3]. Ученые амплифицировали фрагменты ДНК при помощи ПЦР и показали, что в образцах есть последовательности генома Yersinia pestis, и, следовательно, в те годы в Европе бушевала именно чума. Однако повторение эксперимента другими авторами под руководством Томаса Гилберта с использованием более крупной выборки результатов не дало [4]. Команда пришла к обратному выводу, объяснив результат коллег тем, что они амплифицировали ДНК какой-то другой бактерии или засорили образцы современной чумной палочкой.

Самая свежая работа по теме была проведена под руководством Хендрика Пойнара (Hendrik Poinar) и Йоханнеса Краузе (Johannes Krause). Их сотрудники использовали принципиально другой подход с применением секвенаторов нового поколения. Такой подход уже применялся ранее при изучении генома неандертальца [5], однако авторы работы про древнюю чумную палочку утверждают, что их исследование было куда более сложным, поскольку ДНК патогенных бактерий в костях и зубах давно умерших людей чрезвычайно мáло.

Филогенетическое положение и история штамма из Восточного Смитфилда

Рисунок 1. Филогенетическое положение и история штамма из Восточного Смитфилда. а и б — Разные графические представления филогенетических деревьев, построенных на основе последовательностей генома древнего и современных штаммов чумной палочки. Цветами показаны разные ветви ныне живущих штаммов. в — Регионы, из которых брались образцы ДНК чумных палочек для исследования. г — Схема распространения Черной смерти по Европе и прилегающим территориям.

Авторы исследования считают, что общий предок секвенированного ими штамма и ныне живущих возбудителей чумы циркулировал буквально за столетие до того, как появилась Черная смерть, что якобы говорит о том, что линии чумной палочки, ответственные за более ранние эпидемии (например, Юстинианова чума 551–580 гг.), бесследно вымерли. Однако с этим не согласны многие исследователи, указывающие на то, что команда Пойнара и Краузе не рассмотрела многие штаммы чумы из восточной Азии, которые, как считается, имеют более древних предков.

Анализ генома средневековой Yersinia pestis не выявил радикальных отличий от геномов современных штаммов. Авторы склоняются к тому, что то невероятное количество жертв, которое унесла Черная смерть, связано не столько с особенностями штамма, но в значительной мере с факторами окружающей среды, динамикой распространения через организмов-носителей (некоторые ученые предполагают, что бубонную чуму XIV века могли переносить не блохи, а кто-то другой) и восприимчивостью к патогену тогдашнего населения Европы.

Читайте также: