Возможные экраны при вирусах

Обновлено: 18.04.2024

Когда в конце XVII в. Левенгук открыл микробов, казалось, что открыта последняя грань жизни, что обнаружены последние не известные до того времени человеку живые существа. Свыше полутора веков изучали микробов, не догадываясь о той громадной роли, которую они играют в природе. Только во второй половине XIX в. были сделаны открытия, которые позволили выяснить громадное значение микробов в самых разнообразных явлениях, совершающихся на земле.

Знаменитому французскому ученому Луи Пастёру человечество обязано открытием микробной природы инфекционных (заразных) болезней. После открытия Пастёра каждый год приносил новые замечательные открытия в этой области, и в течение нескольких десятков лет возбудители очень многих тяжелых заболеваний (чумы, холеры, туберкулеза, брюшного тифа и других) стали известны человечеству. Однако самые настойчивые попытки обнаружить возбудителей таких заболеваний, как бешенство, оказались безуспешными, и еще Пастёр высказал предположение о существовании настолько маленьких микробов, что они не могут быть видимы даже в самые лучшие микроскопы.

Эта догадка получила подтверждение в открытии русского ученого Ивановского.

Изучая мозаичную болезнь табака — заболевание, которое вызывает некрозы (омертвения) на табачных листьях, Ивановский в 1892 г. обнаружил, что сок этих листьев, свободный от каких бы то ни было обнаруживаемых при самых сильных увеличениях микроскопа микробов, вызывает это заболевание у здоровых растений. Эта работа осталась незамеченной. Но когда 6 лет спустя Леффлер и Фрош сделали аналогичные наблюдения при заболевании крупного рогатого скота, которое называется ящуром и выражается в появлении пузырьков в глотке и на копытах животных, вопрос о невидимых микробах встал во всей своей остроте.

Лист, пораженный мозаичной болезнью

В настоящее время известно свыше сотни фильтрующихся вирусов. Заболевания, вызываемые ими, чрезвычайно разнообразны и поражают различных животных и человека.

Среди вирусов, поражающих человека, нужно отметить оспу, бешенство, детский спинномозговой паралич 2 , корь, желтую лихорадку, свинку и различные виды летаргического энцефалита (сонная болезнь).

Включения в нервных клетках при бешенстве

Последние исследования английских ученых выяснили вирусную природу такого распространенного заболевания, как грипп. Весьма вероятно, что скарлатина также является вирусным заболеванием 3 .

Наряду с этими иногда очень опасными для жизни заболеваниями вирусы вызывают и такое невинное заболевание человека, как бородавки.

Известно свыше 40 вирусных заболеваний, которые поражают домашних животных. Сюда относятся чума лошадей, чума рогатого скота, чума собак, злокачественная анемия лошадей, ящур, оспа овец и верблюдов, чума свиней и многие другие. Большинство этих заболеваний носит повальный характер и причиняет громадный ущерб народному хозяйству.

Но вирусы поражают и многих других животных, они вызывают чуму птиц, канареечную болезнь, они поражают рыб (оспа карпов) и насекомых (желтуха шелковичных червей, гнилец пчел, болезни бабочек).

Громадное количество растений также подвержено вирусным заболеваниям. Одни только мозаичные болезни поражают до 180 различных видов растений. Фильтрующиеся вирусы вызывают желтуху персиков, крыжовника, земляники, курчавость свеклы, поражают картофель, хлопок и ряд других технических и овощных культур. Наконец, они поражают и бактерии. Д’Эрелль описал фильтрующийся вирус, названный им бактериофагом (пожирателем бактерий), который обладал способностью растворять бактерии.

Фильтровальный прибор со свечой

Таким образом фильтрующиеся вирусы поражают громадное количество живых существ. Этим прежде всего определяется практическое значение вирусной проблемы, тем более, что мы до сих пор почти не знаем действительных мер борьбы с вызываемыми ими заболеваниями.

Однако на земле существуют не только болезнетворные вирусы. Существуют и вирусы, не вызывающие заболевания организма и тем не менее размножающиеся в нем. Эти вирусы можно назвать не патогенными (не болезнетворными). Впервые такой вирус был обнаружен в слюнных железах морской свинки. Аналогичные вирусы найдены и у других животных.

Существуют, по-видимому, и такие вирусы, которые, являясь не болезнетворными в обычных условиях, могут вызывать заболевания, если эти условия изменяются. Таковым, например, является вирус, содержащийся в тех пузырьках, которые высыпают на грани кожи и слизистых оболочек после гриппа или других заболеваний (пузырьки герпеса). Содержимое этих пузырьков вызывает смертельный энцефалит (воспаление мозга) у кроликов. Последние исследования показали, что вирус герпеса очень часто встречается в организме здоровых людей, если у таких людей вызвать посторонним агентом какое-нибудь раздражение кожи, то в этих местах появляются пузырьки, содержащие активный вирус герпеса. Таким образом вирус герпеса существует в организме, не нанося ему никакого ущерба, но при известных условиях начинает проявлять свое болезнетворное действие.

Какова же природа фильтрующихся вирусов?

Вначале полагали, что это живые микроорганизмы, величина которых настолько незначительна, что они не могут быть видимыми в микроскоп. Однако впоследствии возникли очень серьезные сомнения в живой природе фильтрующихся вирусов. Для того чтобы разобраться в этом вопросе, коснемся основных свойств фильтрующихся вирусов.

Хотя в большинстве они и невидимы в микроскоп, все же величина их может быть определена различными способами. Можно, например, фильтровать жидкость, содержащую вирусы, через поры, величина которых известна. Можно подвергать жидкость, содержащую вирусы, диффузии и по скорости диффузии судить о величине диффундирующих комплексов; можно, наконец, подвергать эту жидкость центрифугированию и по скорости осаждения составить представление о величине осаждающихся частиц.

Такие исследования были проведены с очень многими вирусами. Хотя эти исследования и не всегда давали точные цифры, все же путем сравнения данных, полученных в различных лабораториях и различными методами, можно составить довольно ясное представление о величине фильтрующихся вирусов.

Как видно из приведенной таблицы, даже самые крупные фильтрующиеся вирусы лежат на границе или ниже границы разрешающей способности микроскопа; границей видимости самых лучших, наиболее совершенных современных микроскопов является величина в 200 миллимикронов 4 . Таким образом, большинство фильтрующихся вирусов в настоящее время действительно является невидимым.

Величины в миллимикронах (0,000001 мм)

Являются ли они живыми? Можно ли представить себе живое существо размером в несколько десятков миллимикронов или даже в несколько миллимикронов? Ведь молекула гемоглобина имеет величину всего в 5,5 миллимикрона, и следовательно, самые маленькие фильтрующиеся вирусы должны состоять в лучшем случае всего из нескольких молекул белка. Однако изучение химической структуры фильтрующихся вирусов показало, что они могут быть получены в растворах, вообще не дающих обычных белковых реакций. Кроме того, вирусы оказались устойчивыми к таким химическим агентам (хлороформ, эфир, карболовая кислота и др.), которые убивают все живое. Отсюда возникли предположения о том, что фильтрующиеся вирусы являются особыми химическими, неживыми агентами, способными нарушать обмен живых клеток микроорганизма. Благодаря этому измененному обмену клетка вновь возвращает в окружающую среду тот же агент в еще более увеличенном количестве. Такую точку зрения упорно защищает в отношении бактериофага и многих фильтрующихся вирусов ряд видных ученых.

Нужно сознаться, что для современного естествознания и медицины вопрос о природе вирусов очень труден. Если признать, что вирусы являются мертвыми химическими агентами, то нужно откинуть теорию Пастёра о том, что все инфекционные заболевания вызываются живыми агентами. А если стать на ту точку зрения, что фильтрующиеся вирусы являются живыми, то придется вступить в конфликт с идеей Вирхова, согласно которой клетка является неделимой основой всего живого; ведь вряд ли можно считать за клетку образования, состоящие всего из нескольких комплексов молекул.

Однако положение не является столь сложным, каким оно может показаться с первого взгляда. Группа фильтрующихся вирусов не является однородной, и среди агентов, причисляемых к этой группе, несмотря на наличие очень многих общих свойств, можно обнаружить две большие подгруппы. К первой из них, которая представлена наиболее крупными вирусами, относятся возбудители таких заболеваний, как оспа, герпес и др. При этих заболеваниях были обнаружены мельчайшие тельца (элементарные тельца), которые, как думает сейчас большинство исследователей, и оказались возбудителями соответствующих инфекций. Эти тельца представляют собой мельчайшие, проходящие через фильтры кокки и с полным правом могут быть названы ультрамикробами. Относительно другой группы вирусов, к числу которых принадлежат бактериофаг, ящур и многие другие, таких данных не имеется, и все попытки обнаружить в жидкостях, содержащих эти вирусы, какие-либо морфологические, доступные для изучения образования, были неудачны. Вряд ли можно сейчас сомневаться в живой природе первой группы фильтрующихся вирусов, и если отсутствуют точные данные, говорящие за живую природу второй группы фильтрующихся вирусов, то все же нужно указать, что изучение их как агентов живой природы является несомненно целесообразным.

Вопрос о природе фильтрующихся вирусов затрагивает таким образом одну из основных проблем биологии — проблему природы жизни. Однако этим не исчерпывается значение проблемы фильтрующихся вирусов для биологии. Многочисленные факты последнего времени настойчиво указывают на ее важность для изучения многих других вопросов биологии. Доказано, что некоторые сортовые признаки растений и даже некоторые мутации растений вызываются вирусами. Доказанная возможность передачи вирусов с пыльцой заставляет думать о большом значении этого вопроса для изучения изменений у растений, передающихся потомству.

Очень интересной является способность некоторых вирусов входить в особые отношения с микробами. Работы нашей лаборатории показали, что вирус может, так сказать, поселиться на микробе, долгое время сохраняться и даже размножаться на его поверхности или внутри микробной клетки. Таким путем микробы могут быть носителями вирусов, с которыми они встречаются в больных организмах. Весьма вероятно, что существуют и противоположные отношения, при которых будет наблюдаться антагонизм микробов и вирусов, но этот вопрос еще не начал изучаться.

Необходимо указать на большое значение проблемы фильтрующихся вирусов и для изучения злокачественных опухолей. В настоящее время доказано, что некоторые злокачественные опухоли птиц и кроликов вызываются фильтрующимися вирусами. В качестве примера такой опухоли можно привести саркому Роуса, которая может перевиваться фильтрами с одной курицы на другую неограниченное количество раз. Хотя пока еще нет никаких данных, которые говорили бы о том, что злокачественные опухоли человека вызываются фильтрующимися вирусами, все же необходимо при их изучении учесть вышеизложенные факты.

Вспомним, что вирус герпеса, находящийся в постоянном симбиозе с организмом, проявляет свое болезнетворное действие при раздражении кожи. Мы знаем, что опухоли также возникают в результате раздражения тканей, и вполне закономерно предположение, что неизвестный агент, вызывающий опухоли и находящийся в неактивном состоянии в организме, может быть активирован раздражением. С этим хорошо согласуются факты, недавно ставшие известными благодаря исследованиям Безредки и Фукса, которые выяснили наличие в некоторых опухолях самостоятельных, автономных от клеток организма агентов.

Каковы же основные свойства фильтрующихся вирусов и как можно изучать эти вирусы, не имея возможности их непосредственно наблюдать?

Общим свойством, присущим всем фильтрующимся вирусам, является неспособность роста на искусственных питательных средах. Все попытки в этом направлении до сих пор оканчивались неудачей. Удалось вырастить многие вирусы в культурах тканей, но никому с достоверностью не удалось получить чистых культур фильтрующихся вирусов на искусственных питательных средах. Это обстоятельство выдвигается исследователями, отрицающими живую природу фильтрующихся вирусов, как один из главных аргументов. Если вирус является ультрамикробом, то почему он не растет без живых растительных или животных клеток? На это можно указать, что потребовались многие годы усилий для получения культур микробов — возбудителей некоторых инфекционных болезней, например сифилиса, в живой природе которых ни у кого нет никаких сомнений. Задача получения чистых культур фильтрующихся вирусов на искусственных средах является одной из основных задач, стоящих в настоящее время перед наукой в этой области.

Следующим общим свойством для всех фильтрующихся вирусов является их необычайная устойчивость к глицерину. Некоторые из них (например вирус детского спинномозгового паралича) сохраняются в глицерине многие годы. Примеров такой устойчивости для микробов мы не знаем.

Многие вирусы очень склонны к мутациям. Если, например, вирус человеческой оспы привить теленку, то этот вирус изменяется и становится неспособным вызывать у человека общее заболевание. Как известно, этим и пользуются при оспенной вакцинации, материал для которой представляет собою вирус человеческой оспы, проведенной через теленка.

Одним из интереснейших свойств фильтрующихся вирусов является способность их вызывать внутриклеточные включения в тех клетках, в которых они размножаются. Включения эти представляют собой обычно овальные или вытянутые образования, размеры которых достигают иногда нескольких десятков микронов; следовательно, они вполне доступны для микроскопических наблюдений. Относительно природы этих включений были высказаны многочисленные догадки. Наиболее вероятным является предположение, что эти образования представляют собой продукты, образуемые клеткой при действии на нее вируса. С другой стороны, для некоторых из этих клеточных включений доказана иная природа. По-видимому, при оспе, особенно при оспе птиц, включения представляют собой колонии возбудителей тех элементарных телец, которые являются морфологическим выражением этих вирусов.

В большинстве случаев убитые вирусы не вакцинируют, не создают иммунитета (невосприимчивости). Это обстоятельство обусловливает громадные трудности в изыскании способов специфической профилактики (предупреждения) вирусных заболеваний. Несмотря на то, что на оспе и бешенстве, классических представителях фильтрующихся вирусов, Дженнером и Пастёром были сделаны наблюдения, заложившие основы современной иммунологии, мы до сих пор почти не имеем эффективных вакцин против других вирусных заболеваний. В последние годы намечается некоторый прогресс в этой области. При действии на вирусы некоторых агентов удалось получить вакцины, могущие рассчитывать на некоторое практическое приложение. К числу таких агентов принадлежат формалин и фотодинамическое действие некоторых красок. Если к жидкости, содержащей вирусы, прибавить метиленовую синьку и подержать эту жидкость на свету, то вирус теряет свою активность. Весьма вероятно, что при этом он оказывается убитым. Тем не менее эта жидкость сохраняет способность вызывать иммунитет у животных. Эти исследования пока еще не получили практического использования.

Необходимо отметить большую трудность изучения вирусов. В большинстве случаев мы их не можем видеть, не можем выращивать на искусственных питательных средах. Для их изучения приходится пользоваться животными, которые являются восприимчивыми к тому или другому вирусу, и на этих животных исследовать основные закономерности, характеризующие соответствующий вирус.

Однако существуют вирусы, которые поражают только один вид животных или очень небольшое количество животных видов; например, корью нельзя заразить ни одно животное; даже заражение обезьян не дает закономерных и постоянных результатов. Детским спинномозговым параличом можно заразить только человека и обезьян.

Кроме того, изучение вирусов требует специальной аппаратуры. Для того чтобы очистить вирус от посторонних веществ, приходится пользоваться особыми центрифугами, дающими не менее десяти тысяч оборотов в минуту. Микроскопические наблюдения необходимо вести наиболее совершенными оптическими системами и в условиях ультрафиолетового освещения. Так как ультрафиолетовый свет имеет более короткую волну, то тем самым повышается разрешающая способность микроскопа и становятся видимыми более мелкие объекты. Однако глаз не воспринимает ультрафиолетовых лучей, и следовательно, освещаемые ими объекты можно только фотографировать.

Для получения вирусов, свободных от посторонних микробов, необходимо пользоваться особыми фильтрами (либо из фарфора, либо из инфузорной земли). Вся эта аппаратура очень дорога и малодоступна для большинства лабораторий. Необходимо указать также, что изучение вирусов требует совместной работы микробиолога, гистолога и биохимика. Только располагая всесторонними данными, можно делать относительно вирусов обоснованные выводы и заключения.

В настоящее время изучение фильтрующихся вирусов начато в широком объеме и в нашем Союзе, для чего создаются специальные лаборатории. Необходимые на это дело затраты целиком окупятся, так как они помогут найти средства борьбы с тем громадным ущербом, который наносят вирусы народному хозяйству и здравоохранению.

Литература
1. Риверс Т. Фильтрующиеся вирусы. Сельхозгиз, 1934 г.
2. Рыжков В. Л. Вирусные болезни растений. Сельхозгиз, 1935 г.

2 В настоящее время для некоторых упомянутых в статье заболеваний чаще используются другие названия: детский спинномозговой паралич — это полиомиелит, чума птиц — птичий грипп, канареечная болезнь — канареечная оспа.

3 Позже было установлено, что скарлатину вызывают стрептококковые бактерии, инфицированные бактериофагом T12. Упоминаемые далее европейский и американский гнилец у пчёл, а также сыпной тиф, возбудители которого сравнимы по размерам с вирусами, также были отнесены к бактериальным заболеваниям.

Маски и перчатки уже стали символами 2020 года, первая половина которого прошла в борьбе с COVID-19. В разгар пандемии ряды защитных средств пополнились экранами из пластика — они похожи на маску сварщика и выглядят внушительно. Специалисты Всемирной организации здравоохранения напоминают , что нет смысла носить перчатки в общественных местах (лучше почаще мыть руки). В обновлённых рекомендациях по ношению масок ВОЗ Недавно вышла Но для людей разных профессий — в первую очередь врачей — физическое дистанцирование невозможно. Маски и респираторы снижают риск заражения на 85% с большей эффективностью в медицинских учреждениях. Защитные экраны из пластика создают дополнительный физический барьер. Экран защищает глаза, а именно защита глаз снижает риск заразиться на 78%.

Нужно ли обычным людям носить защитные экраны

Эксперты ВОЗ рекомендовало использование экранов в дополнение к маскам.

Защитные экраны пригодятся тем, кто постоянно работает с людьми, не имея возможности дистанцироваться, а также пациентам, которые находятся в группе риска заражения коронавирусом. Медицинские маски тоже эффективны , их использование оправданно. Тканевая маска должна иметь несколько слоёв и плотно прилегать к лицу.

Как защитить себя после снятия самоизоляции

мойте руки и лицо (а лучше принимайте душ) после каждого выхода на улицу, в магазин, на прогулку. Следите, чтобы дети тоже регулярно мыли руки;

высыпайтесь . Сон важен для нормального функционирования иммунной системы. Чем лучше работает ваш иммунитет, тем ниже вероятность заражения и тяжёлого течения заболевания;

в хорошую погоду хочется есть больше фруктов и ягод, устраивать пикники. Не забывайте тщательно мыть плоды и не садитесь слишком близко к другим отдыхающим. Возьмите с собой на прогулку мыльный раствор и обычную воду для мытья рук или антисептик.

Что в итоге

Пластиковые экраны помогают не трогать лишний раз глаза и являются хорошим дополнением к другим средствам индивидуальной защиты. Ношение экранов оправданно, если вы постоянно контактируете с людьми на работе — это поможет вам не заразиться и не заразить окружающих

Для защиты от маленьких частиц, соизмеримых по размеру с коронавирусом, эффективнее применять экраны для лица, а не хирургические маски. Это доказали ученые израильского Института биологических исследований. Экран блокирует в десять раз больше частиц. Это справедливо и в отношении человека в защите, и в отношении окружающих. Лучше всего защищают экраны, края которых выступают сверху над кромкой головы и загибаются по краям. Российские ученые подтверждают выводы израильских экспертов.

Под щитком


Чтобы понять, что эффективнее защищает от коронавируса — хирургическая маска или защитный экран, ученые израильского Института биологических исследований решили провести серьезный эксперимент. В нем был задействован имитатор кашля, манекен, которому на голову надевались защитные средства, и водочувствительная бумага. Для воссоздания человеческого кашля израильские ученые использовали тщательно откалиброванный диффузор аэрографа — устройства для пневматического распыления. На голову манекена, соединенную с дыхательным тренажером, надевали хирургическую маску и защитные экраны различных конфигураций.

Хорошо ограждают именно высокие экраны с загнутыми краями — иначе вирусные частицы легко проникают сбоку, уточняется в работе. Даже незначительный зазор, как пишут авторы, позволяет потоку обойти защиту, что резко снижает ее эффективность. Впрочем, к тому же результату приводят и неправильно надетые маски.

защитный экран


Когда поток воздуха с каплями, выделенными при кашле, попадает на экран, он отклоняется в стороны, отмечено в исследовании. По краям щитка резкое изменение пограничного слоя вызывает турбулентное перемешивание, которое снижает концентрацию вирусов. Поток окружающего воздуха уносит загрязненный поток дальше, и, таким образом, снижается доля проникающих частиц.

И на щитке

О том, что в соревновании между хирургическими масками и защитными экранами выигрывают последние, говорят и российские эксперты. Кроме того, щитки можно использовать многократно, дезинфицируя поверхность и устраняя вирусные частицы на поверхности.

защитный экран


По словам ученого, вероятность того, что вирус проникнет под экран, невелика, так как вирусные частицы плохо летают по воздуху, быстро осаждаясь на поверхностях. Единственное, необходимо периодически обрабатывать такие щитки дезинфицирующими средствами, считает эксперт.

защитный экран


Выбор между маской и экраном совсем неоднозначен, считает, в свою очередь, профессор-исследователь медицинского института БФУ им. И. Канта (вуза — участника программы повышения конкурентоспособности образования 5-100) Андрей Продеус.

— Если частицы мелкие и идет фронтальное разбрызгивание, то экран будет эффективным. Поэтому щитки больше подойдут, допустим, кассирам в магазинах, — объясняет профессор. — Если же человек находится в общественном транспорте или другом людном месте, где инфекция может проникнуть с любой стороны и под любым углом, всё же маска может быть эффективнее.

Однако есть еще способ повысить свою защиту от вирусов, отметила директор медицинского центра ЮУрГУ, врач общей практики Ольга Веселова.

защитный экран

Впрочем, для тех, кто совсем уж боится за свое здоровье, есть еще респираторы N95, которые выигрывают и у масок, и у экранов. Однако носить их долгое время бывает очень трудно.

Относящийся к данному классу атомно-силовой микроскоп оказался инструментом, подходящим для исследования биологических объектов и позволил не только визуализировать наноразмерные структуры, но и манипулировать ими. В частности, принципиально возможной оказалась манипуляция одиночными вирионами и прямое измерение сил, возникающих при их контакте с поверхностью клетки. Такие эксперименты позволяют получать подробные данные о самом первом и во многих случаях еще недостаточно исследованном этапе заражения клетки — адгезии вируса к ее поверхности. Данные исследования представляют и значительный практический интерес, т.к. могут дать ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

Об авторе

Вирусы являются чрезвычайно малыми объектами — их размеры лежат в диапазоне от нескольких десятков до нескольких сотен нанометров. Первым и на долгое время единственным методом прямой визуализации наноразмерных частиц стала электронная микроскопия (ЭМ), которая начала развиваться в 1930-е гг. Метод, оказавшийся очень информативным, позволил не только детально охарактеризовать структуру различных вирусов, но и исследовать процессы, происходящие в зараженной клетке.

Оказалось, что форма вирусных частиц отличается большим разнообразием: от правильных сфер до сложных структур, напоминающих кирпичи, обклеенные трубочками (вирус натуральной оспы), или щетинистых червей (вирус геморрагической лихорадки Эбола).

Вне клетки любой вирус является всего лишь молекулярным контейнером с генетическим материалом (ДНК или РНК) и вряд ли может считаться полноценным живым организмом, хотя по этому вопросу в научной среде до сих пор нет окончательной терминологической определенности.

Так, исследование репликации вируса методом просвечивающей электронной микроскопии на ультратонких срезах выглядит следующим образом: зараженные клетки обрабатывают фиксирующим раствором, обезвоживают спиртом и заливают специальной смолой. После отвердевания смолы с помощью специального прибора — ультратома — делают ультратонкие (≈ 50 нм) срезы, которые затем наносят на специальную сетку и обрабатывают растворами солей тяжелых металлов. Во время самого микроскопического исследования образец находится в вакуумной камере и подвергается действию пучка электронов с энергией в несколько десятков кэВ. Очевидно, что прижизненная визуализация в данном случае принципиально невозможна.

В течение почти полувека электронная микроскопия оставалась единственным методом визуализации наноразмерных объектов. Однако в начале 1980-х гг. эта монополия была нарушена появлением сканирующей зондовой микроскопии (СЗМ). Основным принципом СЗМ является сканирование — прецизионное (с высокой точностью) перемещение зонда вблизи исследуемой поверхности, сопряженное с отслеживанием определенного параметра, характеризующего взаимодействие между зондом и образцом. Результатом такого сканирования является топографическая карта рельефа поверхности образца.

Первым прибором СЗМ стал сканирующий туннельный микроскоп (СТМ), который мог лишь весьма ограниченно использоваться для визуализации биологических объектов, так как для его работы требовалась высокая электрическая проводимость исследуемой поверхности.

В 1986 г. швейцарский физик Г. Бинниг и его коллеги создали новый прибор семейства СЗМ — атомно-силовой микроскоп (АСМ). В основе его работы лежит силовое (Ван-дер-Ваальсово) взаимодействие атомов зонда и поверхности. АСМ не требуется электрическая проводимость поверхности образца, и он может осуществлять съемку в жидкой среде. Поэтому этот прибор оказался удобным инструментом для исследования биологических объектов.

Принципиальная схема работы атомно-силового микроскопа (АСМ). Чувствительным элементом АСМ является упругая консоль (кантилевер), на конце которой закреплен острый зонд. Силы, возникающие между атомами острия зонда и исследуемой поверхностью приводят к деформации кантилевера, которая в свою очередь фиксируется при помощи оптической системы, реализованной в большинстве современных АСМ на основе полупроводникового лазера и четырехсекционного фотоприемника. Размер кантилевера — 100÷300 × 20÷40 мкм при толщине около 2 мкм. Высота зонда — около 10 мкм

С момента появления атомно-силового микроскопа было опубликовано огромное число работ, посвященных АСМ-визуализации самых разнообразных биологических образцов. Следует все же признать, что в большинстве случаев в плане визуализации АСМ не дает ничего принципиально нового в сравнении с обычной электронной микроскопией, поэтому зачастую данный метод воспринимается биологами как техническая экзотика, а не как полноценный исследовательский инструмент.

Однако важнейшим, пусть и почти единственным преимуществом визуализации биологических объектов при помощи АСМ по сравнению с электронной микроскопией является возможность выполнения исследований нативных, природных образцов без какой-либо фиксации и специальной пробоподготовки, при физиологических параметрах среды.

Помимо визуализации рельефа поверхности с субнанометровым разрешением АСМ позволяет осуществлять прямое измерение сил, возникающих при взаимодействии одиночных наноразмерных объектов.

Проводятся такие измерения следующим образом: один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке, после чего зонд подводится к поверхности подложки до достижения механического контакта, а затем возвращается обратно. В ходе этого перемещения отслеживается деформация упругой консоли (кантилевера). Зависимость этого параметра от расстояния между зондом и подложкой называется силовой кривой. С ее помощью можно определить величину силы, действующей между исследуемыми объектами. Этот метод, названный атомно-силовой спектроскопией (АСС), может использоваться для исследования силовых характеристик взаимодействия самых разнообразных малых объектов: от неорганических наночастиц до вирусов и живых клеток.

Метод атомно-силовой спектроскопии позволяет определить величину силы, действующей между исследуемыми объектами. Для этого один объект закрепляется на острие зонда АСМ, а второй фиксируется на подложке. Зонд подводится к поверхности подложки и затем поднимается обратно. Зависимость деформации кантилевера от расстояния между зондом и подложкой называется силовой кривой

Начальным этапом заражения клетки вирусом является адгезия (прилипание) вирусной частицы (вириона) к клеточной поверхности с последующим проникновением генетического материала вируса внутрь клетки. Этот процесс, определяемый взаимодействием белковых рецепторов, расположенных на поверхности клетки, с поверхностными белками вириона, является критически важным для размножения вируса. И, надо отметить, в большинстве случаев изучен недостаточно.

Однако фиксация одиночной вирусной частицы на острие зонда атомно-силового микроскопа является весьма непростой задачей. Для успешного проведения эксперимента требуется большая подготовительная работа:

  • получить как можно более чистый и концентрированный препарат вируса;
  • подготовить на острие зонда площадку подходящего размера для посадки вириона;
  • химически активировать поверхность зонда для образования ковалентных связей при контакте с белками вируса;
  • убедиться в том, что на зонде закрепился действительно вирион, а не молекулы свободного белка или мелкие фрагменты клеток, всегда присутствующие в препаратах вирусов.

Оценка концентрации и степени чистоты препарата вируса обычно проводится методом просвечивающей электронной микроскопии. Площадку на острие АСМ-зонда, которое обычно изготавливают из кремния или его нитрида, формируют путем длительного сканирования кремниевой или сапфировой подложки при больших значениях развертки и силы прижатия зонда к поверхности. Наиболее наглядной иллюстрацией для этого процесса служит изменение формы острия карандаша в ходе интенсивного рисования.

Адекватным методом контроля геометрических параметров зонда атомно-силового микроскопа (а) при создании площадки для посадки вириона, является электронная микроскопия, как сканирующая, так и просвечивающая: б — площадка на острие зонда для посадки крупной вирусной частицы; в — вирусоподобная частица, закрепленная на острие зонда. Просвечивающая электронная микроскопия (JEM 1400, Jeol, Япония)

По меркам микроскопии, клетка высших организмов является относительно крупным (≈ 10 мкм) объектом, поэтому хорошо видна в световом микроскопе, при помощи которого на нее наводится кантилевер атомно-силового микроскопа. Но как быть с самим зондом, на острие которого предполагается наличие вириона? Строго говоря, вместо вириона там может оказаться все, что угодно: монослой белковых молекул, фрагмент клетки или вириона, агрегат из нескольких вирионов, случайное загрязнение и т. д. Кроме того, в процессе измерения вирион может разрушиться или оторваться от зонда. Визуализация же зонда с вирусной частицей методом электронной микроскопии до силовых измерений недопустима, так как под воздействием высушивания, вакуума и пучка электронов вирион приобретет необратимые изменения.

Наиболее эффективным методом решения данной проблемы оказалась визуализация острия зонда АСМ с помощью электронной микроскопии, осуществляемая непосредственно после силовых измерений. Если на острие будет обнаружена вирусная частица, уцелевшая в ходе эксперимента, то все сомнения развеются.

В течение последних пятидесяти лет в результате поистине титанической работы, проделанной электронными микроскопистами всего мира, накоплен огромный багаж знаний в области ультраструктурных аспектов репликации различных вирусов. Создание атомно-силового микроскопа и техники силовой спектроскопии позволило вплотную приблизиться к произвольной механической манипуляции одиночными вирусными частицами. Это выводит изучение взаимодействия вируса с клеткой на принципиально другой уровень — от структурных исследований к функциональным.

При этом атомно-силовая спектроскопия не является конкурентом для электронной микроскопии, а открывает новое самостоятельное направление исследований — наномеханику взаимодействия вирусной частицы с поверхностью клетки. Весьма вероятно, что в самом ближайшем будущем в данном направлении будут совершены фундаментальные открытия, соизмеримые по значимости с достижениями электронной микроскопии в середине прошлого века.

Изучение механизмов связывания вирусных частиц с поверхностью клетки вызывает значительный интерес не только с позиции фундаментальной науки, но и в контексте практических приложений. Более детальное понимание этих механизмов на молекулярном уровне может дать человечеству ключ к созданию эффективных противовирусных препаратов, защищающих клетки от проникновения вирусов.

В публикации использованы фото автора

* Просвечивающая электронная микроскопия с использованием специальной жидкостной ячейки и сканирующая электронная микроскопия при атмосферном давлении позволяют исследовать биологические объекты без фиксации, но из-за ряда технических трудностей и относительно низкого пространственного разрешения эти методы не получили широкого распространения.

Читайте также: