Выход вирусов из клетки характеристика

Обновлено: 18.04.2024

Формирование и выход из клетки вирионов. Процесс упаковки и дозревания вирусов в клетке.

Процесс репродукции вируса завершается формированием и освобождением вирионов из клетки. Зрелые вирионы образуются из синтезированных в клетке вирусных компонентов: нуклеиновой кислоты и белков. Как только их концентрация достигнет определенного уровня, начинается процесс самосборки вирионов, в основе которого лежит специфическое узнавание-взаимодействие вирионных компонентов.

В инфицированных клетках вирусные нуклеиновые кислоты и вирусспецифические белки синтезируются в значительно большем количестве, чем включаются в вирусные частицы. Синтез вирусных нуклеиновых кислот и вирусспецифических белков происходит почти одновременно и не менее чем на 1 ч опережает начало созревания вирусных частиц.

Разнообразие структуры вирусов отражается на способе их формирования и выходе из клетки. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы.

Все безоболочечные вирусы позвоночных имеют кубическую симметрию. Структурные белки просто устроенных вирусов связываются спонтанно, образуя капсомеры, которые благодаря самосборке образуют капсиды, в которые упаковывается вирусная нуклеиновая кислота.

В процессе морфогенеза пикорнавирусов образуются различные вирусные структуры с последовательно возрастающими коэффициентами седиментации. Комплектование вириона часто связано с протеолитическим расщеплением одного или более капсидных белков, что хорошо изучено на примере полиовируса и вируса ящура.

строение сформированного флавивируса

Перед образованием зрелых вирионов из трех структурных полипептидов VPO, VP1 и VP3 (по 60 копий каждого) формируется прокапсид. Затем белок VPO расщепляется на два структурных белка (VP2 и VP4), и образуются зрелые частицы пикорнавирусов.

Механизм укладки вирусной нуклеиновой кислоты в переформированный прокапсид был выяснен у аденовирусов. Особый белок, прикрепленный к нуклеотидной последовательности на одном конце вирусной ДНК-известный как упаковывающая последовательность, помогает ДНК входить в прокапсид, прикрепляясь к базовым белкам ядра, после чего некоторые капсидные белки расщепляются и вирион становится зрелым. Большинство безоболочечных вирусов накапливается в цитоплазме или ядре и их можно обнаружить, как внутриклеточные инфекционные вирионы перед освобождением путем цитолиза.

Вирионы могут освобождаться из клетки при ее разрушении в результате лизиса или медленного, контролируемого процесса. По первому типу выходят из клетки вирусы, лишенные оболочки. Второй тип выхода из клетки характерен для оболочечных вирусов.

У оболочечных вирусов сначала формируются нуклеокапсиды, или сердцевины, которые затем покрываются белками наружных оболочек. Вирусы, имеющие оболочку (кроме вирусов оспы и реовирусов), формируются на клеточных мембранах.

Все оболочечные вирусы млекопитающих со спиральным нуклеокапсидом, так же как некоторые вирусы с икосаэдрическим нуклеокапсидом (герпесвирусы, тогавирусы и ретровирусы), созревают при почковании через плазматическую мембрану, через внутреннюю цитоплазматическую мембрану или через мембрану ядра.

Выход этих вирусов из клетки является одновременно и завершающей стадией формирования зрелого вириона. Образование зрелых вирионов у оболочечных вирусов осуществляется при почковании их нуклеопротеинов через модифицированные участки цитоплазматических или ядерных (герпесвирусы) мембран, в которых клеточные белки заменены вирусспедифическими.

Внутриклеточные и внеклеточные (полные) вирионы вируса оспы различаются между собой в антигенном отношении. Вирус выходит из ядра только через те участки мембраны, которые образовались после заражения. Именно этим и объясняется наличие вирусспецифических белков в вирусной оболочке.

Включение вирусных гликопротеинов в липидную двуслойную оболочку зараженной клетки происходит в результате замещения клеточных белков. Вирусные гликопротеины, объединенные в олигомеры, образуют типичные палочкообразные или булавообразные пепломеры с гидрофильными участками, экспонируемые над наружной поверхностью мембраны, а гидрофобный трансмембранный якорный домен и короткий гидрофильный цитоплазматический домен проецируется слабо в цитоплазме. В случае с икосаэдрическими вирусами, каждая молекула белка нуклеокапсида соединена непосредственно с цитоплазматическим доменом олигомера мембранного гликопротеина, окружающего нуклеокапсид.

Вирусы со спиральными нуклеокапсидами в большинстве случаев имеют матриксный белок, который прикрепляется к цитоплазматическому участку гликопротеинового пепломера; а противоположным концом к матриксному белку и это инициирует почкование. Освобождение отдельного вириона и массы вирионов не сопровождается образованием бреши в плазматической мембране и ее заметным повреждением. Многие, но не все вирусы, которые почкуются через плазматическую мембрану, являются цитопатогенными и могут быть связаны с персистентной инфекцией.

Флавивирусы, коронавирусы, артеривирусы и буньявирусы созревают, почкуясь через мембрану комплекса Гольджи или гладкой эндоплазматической сети; везикулы, содержащие вирус, затем мигрируют к плазматической мембране, с которой они сливаются, освобождая вирионы экзоцитозом. Уникальным для герпесвирусов является то, что их оболочка формируется при почковании через внутренний слой ядерной мембраны. Такие вирионы выходят из клетки через каналы цитоплазматического ретикулума, соединяющие ядерную оболочку с наружной мембраной клетки.

Благодаря такому механизму выделения, эти вирусы могут передаваться от клетки к клетке, несмотря на наличие антител в экстрацеллюлярном пространстве. Таким образом, возможна передача вируса от клетки к клетке без выхода во внешнюю среду.

Особую проблему представляет механизм формирования зрелых вирусных частиц, содержащих несколько различных молекул РНК (ортомиксо-, рео-, бир-на- и аренавирусы). Трудно представить, каким образом из пула нуклеиновых кислот в данный вирион попадает строго определенный комплект молекул РНК. Вероятно, важную роль в отборе нужных молекул играет специфическое взаимодействие нуклеиновой кислоты с определенными структурными белками вирионов.

- Вернуться в оглавление раздела "Микробиология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Для вирусов характерен дизъюнктивный (от disjuncus — разобщенный) способ репродукции-размножения. Потомство вируса возникает в результате сборки нуклеиновых кислот и белковых субъединиц, которые синтезируются раздельно клеткой хозяина.

Проникновение вируса в клетку и воспроизведение себе подобных проходит в несколько фаз:

1.проникновение в клетку хозяина,

2.синтез ферментов, необходимых для репликации вирусных нуклеиновых кислот,

3.синтез вирусных частей,

4.сборка и композиция зрелых вирионов,

5.выход зрелых вирионов из клетки.


Стадии репродукции вирусов.

1 - адсорбция вириона на клетке; 2 - проникновение вириона в клетку путем виропексиса;

3 - вирус внутри вакуоли клетки; 4 - `раздевание вириона вируса; 5 - репликация вирусной нуклеиновой кислоты; 6 - синтез вирусных белков на рибосомах клетки; 7 - формирование вириона; 8 - выход вириона из клетки путем почкования.

Фаза I — адсорбция вириона на поверхности клетки.

Протекает в две стадии: первая — неспецифическая, когда вирус удерживается на поверхности клетки при помощи электростатических сил, т. е. благодаря возникновению противоположных зарядов между отдельными участками мембраны клеток и вируса. Эта фаза взаимодействия вируса с клеткой обратима, на нее оказывают влияние такие факторы, как рН и солевой состав среды.

Вторая стадия — специфическая, когда взаимодействуют специфические рецепторы вируса и рецепторы клетки, комплементарные друг другу. По химической природе рецепторы клетки могут быть мукопротеидами (или мукополисахаридами) и липопротеидами. Разные вирусы фиксируются на разных рецепторах: вирусы гриппа, парагриппа, аденовирусы — на мукопротеидах, а вирусы клещевого энцефалита, полиомиелита — на липопротеидах.

Фаза II — проникновение вируса в клетку. Электроноскопические наблюдения за процессом проникновения вирусов в чувствительные к ним клетки показали, что оно осуществляется посредством механизма, напоминающего пиноцитоз, или, как чаще называют, виропексис. В месте адсорбции вируса клеточная стенка втягивается внутрь клетки, образуется вакуоль, в которой оказывается вирион. Параллельно клеточные ферменты (липазы и протеазы) вызывают депротеинизацию вириона — растворение белковой оболочки и освобождение нуклеиновой кислоты.

Фаза III — скрытый период (период эклипса — исчезновения). В этот период в клетке невозможно определить наличие инфекционного вируса ни химическими, ни электронно-микроскопическими, ни серологическими методами. О сущности этого явления и его механизмов пока известно мало. Предполагается, что в скрытой фазе нуклеиновая кислота вируса проникает в хромосомы клетки и вступает с ними в сложные генетические взаимоотношения.

Фаза IV — синтез компонентов вириона. В этой фазе вирус и клетка представляют единое целое, вирусная нуклеиновая кислота выполняет генетическую функцию, индуцирует образование ранних белков и изменяет функцию рибосом. Ранние белки подразделяются на:

а) белки-ингибиторы (репрессоры), подавляющие метаболизм клеток

б) белки-ферменты (полимеразы), обеспечивающие синтез вирусных нуклеиновых кислот.

Синтез нуклеиновых кислот и белков протекает неодновременно и в разных структурных частях клетки. У вирусов, содержащих ДНК или РНК, эти процессы имеют некоторые различия и особенности.

Процесс формирования вирионов начинается спустя определенное время после того, как начал осуществляться синтез составляющих их компонентов. Продолжительность этого периода довольно вариабельна и предопределяется природой вируса — для РНК-содержащих обычно короче, чем для ДНК-вирусов. Например, продукция полных вирусных частиц осповакцины начинается приблизительно спустя 5—6 ч после инфицирования клеток и продолжается в течение последующих 7—8 ч, т. е. после того как синтез вирусной ДНК уже завершен.




Между нуклеиновой кислотой и соответствующим белковыми субъединицами образуются очень прочные связи, о чем свидетельствуют трудности отделения белка от вирусной нуклеиновой кислоты. Большую прочность вирусной частице придают входящие в ее состав углеводы и особенно липиды.

Формирование вирионов, так же как и синтез компонентов вируса, происходит в разных местах клетки, при участии различных клеточных структур. После завершения процесса формирования образуется зрелая дочерняя вирусная частица, обладающая всеми свойствами родительского вириона. Но иногда наблюдается образование так называемых неполных вирусов, которые состоят или только из нуклеиновой кислоты, или из белка, или из вирусных частиц, формирование которых остановилось в какой-то промежуточной стадии.

Фаза VI — выход зрелых вирионов из клетки. Существуют два основных механизма выхода зрелых вирионов из клетки:

1) выход вириона с помощью почкования. В этом случае наружная оболочка вириона происходит из клеточной мембраны, она содержит как материал клетки хозяина, так и вирусный материал;

2) выход зрелых вирионов из клетки через бреши в мембране. Эти вирусы не имеют наружной оболочки. При таком механизме выхода вирусов клетка, как правило, погибает и в среде появляется большое количество вирусных частиц.

Причиной гибели зараженной клетки могут быть три механизма:

2.защитная реакция клетки, запускающая генетическую программу ее гибели (апоптоз);

3. иммунная система организма, уничтожающая зараженную клетку.

Кроме продуктивного типа взаимодействия вируса и клетки возможно интегративное сосуществование или вирогения. Вирогения характеризуется интеграцией (встраиванием) нуклеиновой кислоты вируса в геном клетки, а также репликацией и функционированием вирусного генома как составной части генома клетки. Для интеграции с клеточным геномом необходимо возникновение кольцевой формы двунитевой ДНК вируса. Встроенная в состав хромосомы клетки вирусная ДНК называется провирусом. Провирус реплицируется в составе хромосомы и переходит в геном дочерних клеток, т.е. состояние вирогении наследуется. Под влиянием некоторых физических или химических факторов провирус может переходить в автономное состояние с развитием продуктивного типа взаимодействия с клеткой. Дополнительная генетическая информация провируса при вирогении сообщает клетке новые свойства, что может быть причиной развития опухолей, аутоиммунных и хронических заболеваний. На способности вирусов к интеграции с геномом клетки основаны персистенция (от лат. persisto - постоянно пребывать, оставаться) вирусов в организме и развитие персистентных вирусных инфекций. Например, вирус гепатита В способен вызывать персистирующие поражения с развитием хронического гепатита и часто опухолей печени.

Репликация ДНК осуществляется ДНК-полимеразами. Для начала репликации необходим предварительный синтез короткого участка РНК на матрице ДНК, который называется затравкой. С затравки начинается синтез нити ДНК, после чего РНК быстро удаляется с растущего участка.

Репликация вирусных ДНК. Репликация генома ДНК-содержащих вирусов в основном катализируется клеточными фрагментами и механизм ее сходен с механизмом репли­кации клеточной ДНК.

Каждая вновь синтезирован­ная молекула ДНК состоит из одной родительской и одной вновь синтезированной нити. Та­кой механизм репликации назы­вается полуконсервативным.

У вирусов, содержащих коль­цевые двунитчатые ДНК (паповавирусы), разрезается одна из нитей ДНК, что ведёт к раскру­чиванию и снятию супервитков на определенном участке моле­кулы.

При репликации однонитчатых ДНК (семейство парвовирусов) происходит образование двунитчатых форм, которые представляют собой промежуточные репликативные формы.

Репликация вирусных РНК. В клетке нет ферментов, спо­собных осуществить репликацию РНК. Поэтому ферменты, участ­вующие в репликации, всегда вирусспецифические. Реплика­цию осуществляет тот же фер­мент, что и транскрипцию; репликаза является либо модифи­цированной транскриптазой, ли­бо при репликации соответствующим образом модифицируется матрица.

Репликативные комплексы ассоциированы с клеточ­ными структурами либо с предсуществующими, либо вирусиндуцируемыми. Например, репликативные комплек­сы пикорнавирусов ассоциированы с мембранами эндоплазматической сети, вирусов оспы — с цитоплазматическим матриксом, репликативные комплексы аденовирусов и вирусов герпеса в ядрах находятся в ассоциации со вновь сформированными волокнистыми структурами и связаны с ядерными мембранами. В зараженных клетках может происходить усиленная пролиферация клеточных структур, с которыми связаны репликативные комплексы, или их формирование из предсуществующего материала. Напри­мер, в клетках, зараженных пикорнавирусами, происходит пролиферация гладких мембран. В клетках, зараженных реовирусами, наблюдается скопление микротрубочек; в клетках, зараженных вирусами оспы, происходит формиро­вание цитоплазматического матрикса.




В репликативных комплексах одновременно с синтезом геномных молекул осуществляется транскрипция и происходит сборка нуклеокапсидов и сердцевин, а при некоторых инфекциях — и вирусных частиц. О сложной структуре репликативных комплексов говорит, например, такой состав репликативного комплекса аденовирусов: реплицирующиеся ДНК, однонитчатые ДНК, однонитчатые РНК, ферменты репликации и транскрипции, структурные и неструктурные вирусные белки и ряд клеточных белков.

СБОРКА ВИРУСНЫХ ЧАСТИЦ

Синтез компонентов вирусных частиц в клетке разоб­щен и может протекать в разных структурах ядра и цитоплазмы. Вирусы, репликация которых проходит в ядрах, условно называют ядерными. В основном это ДНК-содержащие вирусы: аденовирусы, паповавирусы, парвовирусы, вирусы герпеса. Вирусы, реплицирующиеся в цитоплазме, называют цитоплазматическими. К ним относятся из ДНК-содержащих вирус оспы и большинство РНК-содержащих вирусов, за исключением ортомиксовирусов и ретровирусов. Однако это разделение весьма относительно, потому что в репродукции тех и других вирусов есть стадии, протекающие соответственно в цитоплазме и ядре.

Внутри ядра и цитоплазмы синтез вирусспецифических молекул также может быть разобщен. Так, например, синтез одних белков осуществляется на свободных полисомах, а других — на полисомах, связанных с мембранами. Вирусные нуклеиновые кислоты синтезиру­ются в ассоциации с клеточными структурами вдали от полисом, которые синтезируют вирусные белки. При таком дисъюнктивном способе репродукции образо­вание вирусной частицы возможно лишь в том случае, если вирусные нуклеиновые кислоты и белки обладают способностью при достаточной концентрации узнавать друг друга в многообразии клеточных белков и нуклеи­новых кислот и самопроизвольно соединяться друг с другом, т. е. способны к самосборке.

В основе самосборки лежит специфическое белок-нуклеиновое и белок-белковое узнавание, которое может происходить в результате гидрофобных, солевых и водородных связей, а также стерического соответствия. Белок-нуклеиновое узнавание ограничено небольшим участком молекулы нуклеиновой кислоты и определяется уникальными последовательностями нуклеотидов в некодирующей части вирусного генома. С этого узнавания участка генома вирусными капсидными белками начинается процесс сборки вирусной частицы. Присоединение осталь­ных белковых молекул осуществляется за счет специфичеческих белокбелковых взаимодействий или неспецифиче­ских белокнуклеиновых взаимодействий.

В связи с разнообразием структуры вирусов животных разнообразны и способы формирования вирионов, однако можно сформулировать следующие общие принципы сборки.

1. У просто устроенных вирусов формируются провирионы, которые затем в результате модификаций белков превращаются в вирионы. У сложно устроенных вирусов сборка осуществляется многоступенчато. Сначала форми­руются нуклеокапсиды или сердцевины, с которыми взаимодействуют белки наружных оболочек.

2. Сборка сложно устроенных вирусов (за исключе­нием сборки вирусов оспы и реовирусов) осуществляется на клеточных мембранах. Сборка ядерных вирусов проис­ходит с участием ядерных мембран, сборка цитоплазматических вирусов — с участием мембран эндоплазматической сети или плазматической мембраны, куда независимо друг от друга прибывают все компоненты вирусной части­цы.

5. Сложно устроенные вирусы для построения своих частиц используют ряд элементов клетки-хозяина, например липиды, некоторые ферменты, у ДНК-геномного SV40 — гистоны, у оболочечных РНК-геномных виру­сов — актин, а в составе ареновирусов обнаружены даже рибосомы. Клеточные молекулы несут определенные функции в вирусной частице, однако включение их в вирион может явиться и следствием случайной контами­нации, как, например, включение ряда ферментов клеточ­ных оболочек или клеточных нуклеиновых кислот.

Сборка РНК-содержащих вирусов. Сборка просто устроенных РНК-содержащих вирусов заключается в ассоциации вирусного генома с вирусными капсидными белками с образованием нуклеокапсида.

Все вирусные компоненты — нуклеокапсиды и супер­капсидные белки прибывают к месту сборки незави­симо друг от друга. Первыми к месту сборки прибывают суперкапсидные белки. Обычно этими белками являются гликопротеиды, которые синтезируются в полисомах, связанных с мембранами, и через шероховатые, а затем гладкие мембраны в результате слияния с ними везикул комплекса Гольджи транспортируются на наружную поверхность плазматических мембран или остаются в составе везикул.

Включение М-белка в клеточные мембраны является сигналом для сборки вирусной частицы: вслед за включе­нием немедленно следует связывание нуклеокапсидов с мембранами и почкование вирусной частицы. Тем самым М-белок обладает функцией лимитирующего сборку фактора.

В результате связывания ДНК с капсидами появляет­ся новый класс промежуточных форм, которые называют­ся неполными формами. Помимо неполных форм с раз­ным содержанием ДНК, существует другая промежуточ­ная форма в морфогенезе — незрелые вирионы, отличаю­щиеся от зрелых тем, что содержат ненарезанные пред­шественники полипептидов. Таким образом, морфогенез вирусов тесно связан с модификацией (процессингом) белков.

Сборка ядерных вирусов начинается в ядре, обычно — с ассоциации с ядерной мембраной. Формирующиеся в ядре промежуточные формы вируса герпеса почкуются в перинуклеарное пространство через внутреннюю ядерную мембрану, и вирус приобретает таким путем оболочку, которая является дериватом ядерной мембраны. Дальней­шая достройка и созревание вирионов происходит в мем­бранах эндоплазматической сети и в аппарате Гольджи, откуда вирус в составе цитоплазматических везикул транс­портируется на клеточную поверхность.

ВЫХОД ВИРУСНЫХ ЧАСТИЦ ИЗ КЛЕТКИ

Выход из клетки путем взрыва связан с деструкцией клетки, нарушением ее целостности, в результате чего находящиеся внутри клетки зрелые вирусные частицы ока­зываются в окружающей среде. Такой способ выхода из клетки присущ вирусам, не содержащим липопротеидной оболочки (пикорна-, рео-, парво-, папова-, аденовирусы). Однако некоторые из этих вирусов могут транспортиро­ваться на клеточную поверхность до гибели клетки.

Выход из клеток путем почкования присущ вирусам, содержащим липопротеидную мембрану, которая является дериватом клеточных мембран. При этом способе клетка может длительное время сохранять жизнеспособность и продуцировать вирусное потомство, пока не произойдет полное истощение ее ресурсов.

Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.

По характеру взаимодействия генома вируса с геномом клетки выделяют автономное (геном вируса не интегрирован в геном клетки) и интеграционное (геном вируса интегрирован в геном клетки) инфицирование. Особую форму составляют латентное и персистирующее инфицирование.

Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.

Персистирующее инфицирование клеток вирусам. Некоторые РНК-вирусы могут вызывать персистиру-ющие инфекции, проявляющиеся образованием дочерних популяций возбудителя после завершения острой фазы болезни. При этом происходит постепенное выделение вирусных частиц, но инфицированная клетка не лизируется. Нередко дочерние популяции вирионов дефектны (часто наблюдают у лиц с иммунодефицитами). Иногда такие хронические поражения протекают без клинических проявлений. В частности, вирус гепатита В способен вызывать персистирующее поражение гепатоцитов с развитием хронического гепатита; в дальнейшем возможна малигнизация клеток.

Репродуктивный цикл вирусов

Изображённые на рис. 2-3 этапы репродукции (от адсорбции вирионов до высвобождения дочерней популяции) происходят при продуктивном взаимодействии вируса с клеткой.

Типы инфицирования клеток вирусами. Репродуктивный цикл вирусов. Основные этапы репродукции вирусов. Адсорбция вириона к клетке.

Рис. 2-3. Основные этапы репродукции вирусов.

Адсорбция вириона к клетке

• Процесс адсорбции не зависит от температуры (то есть не требует энергетических затрат) и протекает в две фазы; фаза ионного притяжения обусловлена неспецифическим взаимодействием, фаза прикрепления происходит благодаря структурной гомологии либо комплемен-тарности взаимодействующих молекул.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

В зависимости от типа генетического материала (ДНК или РНК), образование дочерних копий геномов протекает по-разному.

У ДНК-геномных вирусов репликация вирусных ДНК принципиально сходна с репликацией клеточных ДНК.

Репликацию РНК-геномных вирусов осуществляют вирусные РНК-зависимые РНК-полимеразы (репликазы). Исключение составляют ретровирусы, их +РНК служит матрицей для синтеза ДНК Синтез ДНК на матрице РНК осуществляет вирусная РНК-зависимая ДНК-полимераза (обратная транскриптаза), необходимая для переписывания информации с РНК на ДНК. Синтезируемая вирусная ДНК интегрируется в клеточный геном в форме ДНК-провируса.

Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Репликация однонитевых РНК вирусов. Репликация протекает в два этапа: первый включает образование матрицы, комплементарной геному; второй — образование копий РНК с этой матрицы. При репликации +РНК-вирусов количество копий -РНК (на матрице родительской нити +РНК) строго контролируется, а количество копий +РНК (с матрицы синтезированной нити -РНК) не контролируется.

Репликация двухнитевых РНК вирусов. В качестве матрицы для синтеза +РНК вирусные репликазы используют минус-нить РНК и наоборот. Часть молекул -РНК соединяется с +РНК и образует двухнитевую молекулу РНК, а другая часть молекул -РНК функционирует как матрица для синтеза мРНК.

Сборка вирусов

У просто устроенных вирусов, состоящих из нуклеиновой кислоты и нескольких белков, сборка состоит из упорядоченного взаимодействия этих молекул. У сложно устроенных вирусов сборка дочерних популяций протекает многоступенчато.

Взаимодействие нуклеиновых кислот с внутренними и оболочечными белками приводит к образованию нуклеокапсидов, или сердцевин. В процессе образования «одетых - вирусов полные нуклеокапсиды упорядочение выстраиваются с внутренней стороны клеточной мембраны под участками, модифицированными оболочечными вирусными белками (М-белками). При нарушениях процесса самосборки могут образовываться пустые капсиды либо комплексы нуклеиновых кислот с внутренними белками.

Репликация вируса в клетке. Сборка вирусов. Высвобождение дочерних вирионов из клетки.

Высвобождение дочерних вирионов из клетки

Высвобождение дочерних вирионов — конечная стадия репродуктивного цикла. Вирусы, лишённые суперкапсида, и поксвирусы обычно высвобождаются быстро; выход дочерних популяций сопровождается разрушением цитоплазматической мембраны (ЦПМ) и лизисом клетки. Вирусы, содержащие суперкапсид, высвобождаются медленнее. Модифицированные участки мембраны с заключёнными в них вирионами выпячиваются наружу и затем отпочковываются. Принцип высвобождения дочерних популяций почкованием во многом сходен с процессами, направленными на отторжение непригодного для клетки материала или обновление клеточных мембран. При высвобождении почкованием изменённая клетка иногда может сохранять жизнеспособность.

- Вернуться в оглавление раздела "Микробиология."

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: