Запах каких растений может помочь убить вирусы

Обновлено: 18.04.2024

Эфирные масла обладают широким спектром антибактериальной и противовирусной активности и традиционно используются для лечения респираторных заболеваний. В обзоре рассмотрены данные о потенциале активных компонентов эфирных масел в терапии COVID-19.

Эфирные масла при COVID-19

SARS-CoV-2 представляет собой вирион сферической формы. Геном вируса состоит из положительной РНК, которая транслируется в структурные и неструктурные белки. Белок шипа (S) коронавируса (SARS-CoV-2) постоянно мутирует, и вновь появляющиеся варианты ускользают от опосредованной антителами нейтрализации, что является серьезной проблемой. В настоящий момент выявлено 400 различных мутаций спайковых белков SARS-CoV-2 человека по сравнению с эталонной последовательностью SARS-CoV-2 человека из Ухань-Ху-1, Китай [1].

Риски

Поиск терапевтических возможностей

Некоторые лекарства, например дексаметазон, противомалярийные (хлорохин/гидроксихлорохин), противовирусные (ремдесивир) и моноклональные антитела, блокирующие рецептор IL-6 (тоцилизумаб), используются в различных комбинациях в качестве лекарств не по инструкции для лечения COVID-19. Поиск возможностей применения уже изобретенных и изученных средств для борьбы с коронавирусом в настоящее время является актуальной задачей здравоохранения.

Известно, что эфирные масла (ЭМ) оказывают противовоспалительное, иммуномодулирующее, бронходилататорное и противовирусное действие. Предполагается, что они обладают активностью против вируса SARS-CoV-2. Считается, что благодаря своей липофильной природе ЭМ легко проникают через вирусные мембраны, что приводит к их разрушению. Более того, ЭМ содержат несколько активных фитохимических веществ, которые могут действовать синергетически на нескольких стадиях репликации вируса, а также вызывать положительные эффекты на дыхательную систему, включая бронходилатацию и лизис слизи.

В настоящее время доступны компьютерные модели и несколько исследований in vitro, которые демонстрируют активность ЭМ против SARS-CoV-2. В обзоре Asif M и соавт. обсуждается роль ЭМ в профилактике и лечении COVID-19 и вопросы о возможных побочных эффектах [6].

Современный уровень знаний позволяет считать, что комбинация химически синтезированных препаратов и фитопродуктов может повысить эффективность терапии коронавирусной инфекции.

Вирулицидная активность эфирных масел

ЭМ состоят из сложной смеси летучих фитохимических веществ из различных классов, включая монотерпены, сесквитерпены и фенилпропаноиды. Было обнаружено, что ЭМ активны против широкого спектра вирусов, таких как вирус гриппа (IFV), вирусы герпеса человека (HSV), вирус иммунодефицита человека (ВИЧ), вирус желтой лихорадки и птичий грипп [7]. Исследование in vitro, проведенное Шницлером и его коллегами, показало, что масло мелиссы ингибирует образование вирусов HSV-1 и HSV-2. Более того, при более высоких концентрациях оно почти полностью устраняло вирулентность [8]. Пары ЭМ, полученные из эвкалипта, бергамота, и их изолированные соединения, то есть эвгенол и цитронеллол, проявляли эффективное действие против IFV. В жидкой форме эфирные масла, полученные из корицы, бергамота, лемонграсса, тимьяна показали 100% ингибирующую активность при концентрации 3,1 мкл/мл в отношении вируса гриппа. Поскольку паровая форма ЭМ безопасна для эпителиальных клеток, пары эфирных масел могут принести пользу при гриппе [9].

Основные механизмы, посредством которых ЭМ реализуют противовирусное действие [7, 8]:

  • прямое воздействие на свободные вирусы,
  • ингибирование этапов прикрепления вируса, проникновения, внутриклеточной репликации и высвобождения из клеток-хозяев,
  • ингибирование жизненно важных вирусных ферментов.

Принимая во внимание разнообразное противовирусное действие ЭМ, были проведены исследования для проверки эффективности ЭМ против SARS-CoV-2.

Эвкалиптол (эвкалиптовое, каепутовое ЭМ)

Эфирные масла, полученные из эвкалипта (Eucalyptus globulus), традиционно используются для лечения различных респираторных заболеваний, включая фарингит, бронхит и синусит.

Исследование, проведенное Мерадом и его коллегами [16], показало, что почти все пациенты с COVID-19 имеют аномалии легких. Предполагается, что аномальные и сверхактивные воспалительные реакции на SARS-CoV-2 являются основными причинами тяжелого течения заболевания и смерти пациентов с COVID-19. Это гипервоспалительное состояние связано с повышенным уровнем циркулирующих цитокинов, выраженной лимфопенией и значительной инфильтрацией мононуклеарных клеток в легких и других органах, включая сердце, селезенку, лимфатические узлы и почки. Профили системных цитокинов, наблюдаемые у пациентов, показали повышенную продукцию цитокинов, таких как IL-6, IL-7, фактор некроза опухоли (TNF) и многих других провоспалительных цитокинов [16]. Были проведены различные исследования in vitro и ex vivo для изучения воздействия эвкалиптовых масел на циркуляцию моноцитов и макрофагов в ответ на воспаление и инфекции легких. Данные этих исследований демонстрируют заметные иммуномодулирующие свойства как эвкалиптового масла, так и его активного ингредиента, то есть эвкалиптола. Оба снижают высвобождение провоспалительных цитокинов из моноцитов и макрофагов. Также известно, что эвкалиптол обладает муколитическими и бронхолитическими свойствами [12].

Недавний обзор [12] подчеркнул благоприятный профиль безопасности и эффективности эвкалиптола в многочисленных многоцентровых, двойных слепых и рандомизированных клинических испытаниях, проведенных в Германии у пациентов с острыми и хроническими респираторными заболеваниями, включая риносинусит, бронхит, ХОБЛ и астму соответственно.

Таким образом, данные как доклинических, так и клинических испытаний указывают на многообещающий терапевтический потенциал, заключенный в эвкалиптовом масле и его активном компоненте, эвкалиптоле, в профилактике и лечении COVID-19.

Эвгенол (гвоздичное ЭМ), ментол (мятное ЭМ, левоментол)

Сильва и его коллеги использовали методы молекулярной стыковки для проверки эффективности эвгенола, ментола и карвакрола (компонент ЭМ тимьяна) против SARS-CoV-2, против различных белков-мишеней SARS-CoV-2. Оценки стыковки показали, что эти соединения обладают аффинностью связывания с белком шипа SARS-CoV-2, основной протеазой (Mpro), РНК-зависимой РНК-полимеразой и белками ACE-2 человека, соответственно [17].

Ментол обеспечивает облегчение симптомов заложенности носа, связанного с ринитом, и ощущения одышки, связанного с хронической обструктивной болезнью легких, благодаря его специфическому взаимодействию с холодовым ментол-чувствительным рецептором (CMR1), расположенным на окончаниях тройничного нерва [18]. Ментол также обладает противовоспалительными и иммуномодулирующими свойствами. В исследованиях на животных было обнаружено, что лечение ментолом значительно снижает уровни провоспалительных цитокинов, то есть интерлейкина-1, интерлейкина-23 и фактора некроза опухоли-α (TNF-α) [19, 20].

Эвгенол обладает противовоспалительными свойствами – защищает легкие от острого повреждения, вызванного липополисахаридами (ЛПС), ингибирует рекрутирование лейкоцитов в легкие и снижает экспрессию провоспалительных цитокинов (IL-6 и TNF-α) [21].

Перспективы применения комплекса эфирных масел

Выводы

COVID-19 стал весьма серьезной угрозой для здоровья населения. Клинически доказано, что немногие лекарства обладают эффективностью против SARS-CoV-2 и его воспалительных осложнений. В настоящее время в качестве поддерживающего лечения используются различные комбинации препаратов. Давно известно, что эфирные масла обладают противовоспалительными, антиоксидантными, иммуномодулирующими и противовирусными свойствами, и предполагается, что они обладают активностью против SARS-CoV-2. Однако необходимы хорошо спланированные исследования для определения безопасной дозы и клинической эффективности эфирных масел против SARS-CoV-2.

Литература


Секрет растений с антисептическим эффектом в том, что они содержат эфирные масла, богатые фитонцидами — летучими веществами, уничтожающими патогенную микрофлору в виде вирусов, бактерий и плесневелых грибков. Поэтому некоторые особенные комнатные цветы могут выступать дезинфекторами воздуха в помещении.

Король противовирусных комнатных растений — это эвкалипт. Он является номером один в медицине в борьбе с болезнями верхних дыхательных путей. Летучие вещества обеззараживают воздух и облегчают дыхание.

Цитросовые деревья: лимон, мандарин, апельсин. Они прекрасно очищают воздух от патогенной микрофлоры и делают его непригодным для жизни вирусов и бактерий.

Хвойные комнатные деревья (пихта, эвкалипт и другие) также содержат очень много эфирных масел с антисептическим эффектом, которые, испаряясь, делают воздух почти стерильным.

Мирт также относится к дезинфекторам. Эти цветы могут снижать вирусную активность и борются с бактериями, даже с такими, как палочка Коха (туберкулезная палочка) и стафилококк.

Лавровое дерево может служить не только прекрасной специей, но и содержит высокоэффективные эфирные масла, которые обладают антисептическим эффектом. Небольшое лавровое дерево способно обеззаразить компактную комнату.

Как ни странно, но пеперомия тоже может дезинфицировать воздух. У нее высокая фитонцидная активность, которая справится даже со стафилококками и сарцинами.

Лаванду мы больше знаем, как естественное успокоительное и снотворное. Оказывается, она содержит эфирные масла с антисептическими свойствами.

Ещё одна известная всем специя — розмарин. Если же его выращивать дома как комнатное растение, то это позволит бороться с патогенной микрофлорой в помещении.

И, наконец, крассула (толстянка, денежное дерево) также обладает дезинфицирующими свойствами. Эти комнатные цветы выделяют фитонциды, которые убивают до 80% патогенной микрофлоры в непосредственной близости от растения. Правда, чтобы обеззаразить помещение, понадобится много деревьев, пишет astro.clutch.

К слову, биологи считают также мощными дезинфекторами герань, лук и чеснок, которые также можно высаживать дома.

Подняты вопросы применения эфирных масел для медицинских целей: эффективность борьбы с бактериальными и вирусными возбудителями. Критерии качества эфирных масел и их свойства, перспективное направление – синергичность комплекса эфирных масел при ОРИ.

Эфирные масла – летучие продукты вторичного метаболизма растений. Более 17 500 видов цветковых растений вырабатывают эфирные масла, которые придают им характерный запах и вкус. Однако широкое применение нашли чуть более 300 эфирных масел [1].

Эфирные масла имеют очень сложный химический состав: они содержат два или три основных компонента, преимущественно это терпены, терпеноиды и фенилпропаноиды. Основные компоненты эфирных масел составляют примерно 70 % его состава. Оставшаяся часть содержит множество других соединений, такие как жирные кислоты, оксиды и производные серы [2]. Соединения, входящие в состав эфирных масел, синтезируются в цитоплазме и пластидах растительных клеток. Они производятся и хранятся в сложных секреторных структурах, таких как железы, секреторные полости и смоляные канальца и присутствуют в виде капель жидкости в листьях, стеблях, цветках и фруктах, коре и корнях растений.

Антимикробные свойства эфирных масел очень важны для решения проблемы быстро растущей устойчивости микроорганизмов к лекарствам. В 2016 году около 6 миллионов человек во всем мире умерли из-за инфекций верхних дыхательных путей, туберкулеза или диарейных заболеваний. Согласно отчету ВОЗ о лекарственной устойчивости, наиболее серьезную озабоченность вызывают резистентоность Klebsiella pneumoniae к цефалоспоринам третьего поколения и карбапенему, Escherichia coli к цефалоспоринам третьего поколения и фторхинолонам, Staphylococcus aureus к метициллину, Streptococcus pneumoniae к пенициллину и Salmonella sp. к фторхинолонам. Среди грибковых инфекций наиболее распространенной проблемой является кандидоз, вызываемый в основном Candida albicans и реже C. Glabrata и C. parapsilosis, причем более 20 видов Candida могут вызывать инфицирование человека [3].

Для борьбы с антибиотико-резистентными организмами, а также для уменьшения неконтролируемого применения антибиотиков большой интерес представляют эфирные масла. Далее представлен подробный обзор эфирных масел, обладающих наиболее выраженными свойствами в отношении микроорганизмов – возбудителей простудных и иных заболеваний.

Эфирное масло тимьяна

Сырье для эфирного масла тимьяна

Род Thymus, насчитывающий более 400 видов, относится к семейству Lamiaceae. Эфирные масла содержат листья и цветки [4,5]. Противомикробная активность наиболее изучена для Thymus vulgaris L. (тимьян обыкновенный) [6]. Высокий внутривидовой полиморфизм позволил обнаружить 6 хемотипов этого вида [7,8]. Эфирное масло тимьяна получают методом паровой дистилляцией свежих надземных частей. Наивысший уровень продукции эфирных масел обычно происходит в период цветения растения [6].

Химический состав эфирного масла тимьяна

Основными компонентами эфирного масла тимьяна являются тимол (36–55%) и п-цимен (15–28%). Тимол характеризуется сильными бактерицидными, грибковыми и противопаразитарными свойствами при относительно низкой токсичности для людей и животных.

Антимикробные и противовирусные свойства эфирного масла тимьяна

Эфирное масло тимьяна проявляет противовирусную активность, поскольку он был активен в отношении простого герпеса (HSV1, ДНК-вирус) [10]. Эфирное масло тимьяна продемонстрировало 100% ингибирующую активность в жидкой фазе против вируса гриппа A1 / Denver / 1/57 (H1N1) при 30-минутном воздействии [11]. Но наиболее важный эффект масла тимьяна касается бактерий. Особенно высокую бактериостатическую активность против большинства грамположительных и грамотрицательных бактерий демонстрирует тимоловый хемотип T. Vulgaris L., описанный во многих обзорах [6,12–14]. Также была исследована активность эфирного масла тимьяна против штаммов, вызывающих острый бактериальный фарингит и воспаление горла. Эта инфекция вызывается штаммами β-гемолитических стрептококков, например S. pyogenes. Эфирное масло тимьяна было активно в отношении штаммов S. pyogenes, выделенных из глотки пациентов [15], подтверждена его эффективность против S. Aureus ATCC 25923 и K. Pneumoniae ATCC 13882.[6].

Эфирное масло мяты перечной

Сырье для эфирного масла мяты перечной

Род Mentha является частью семейства Lamiaceae (Lamiaceae) и включает около 30 видов. Из-за высокой вариабельности видов и простоты скрещивания химический состав получаемых из них эфирных масел очень разнообразен [2]. Один из видов – мята перечная – представляет собой естественный гибрид двух видов: Mentha spicata L. и Mentha aquatic.L. Peppermint. Эфирное масло из мяты перечной получают после перегонки высушенных листьев с водяным паром. [4, 5,16].

Химический состав эфирного масла перечной мяты

В эфирном масле мяты было идентифицировано около 300 соединений. Основные компоненты: ментол (30–55%) и ментон (14–32%). Количественный состав эфирного масла зависит от многих факторов, таких как условия выращивания и дата сбора урожая. [4, 5, 9].

Антимикробные свойства эфирного масла перечной мяты

Эфирное масло мяты перечной показало высокий уровень вирулицидной активности против вируса простого герпеса (HSV-1 и HSV-2) в тестах на вирусную суспензию. Эфирное масло мяты перечной воздействовало на вирус до адсорбции, но не после проникновения в клетку-хозяина [17]. Широкое использование масла перечной мяты связано больше с приятным ароматом мяты и ощущением прохлады, чем с его антимикробными свойствами. Однако считается, что более высокое содержание ментола в эфирном масле перечной мяты обладает большей антимикробной активностью. В тесте на диффузию ЭО перечной мяты подавляло рост бактериальных штаммов, таких как E. Coli WDCM 00013, L. Monocytogenes WDCM 00020, P. aeruginosa WDCM 00024, S. Enterica WDCM 00030 и S. Aureus WDCM 00032. [18].

Стоит отметить, что хотя один из эфиров масла мяты обладает слабой антибактериальной активностью, он может иметь синергетический эффект с другими эфирными маслами или веществами. Например, он увеличил активность эфирного масла Pongamia pinnata и дополнительно увеличил более чем в 30 раз чувствительность бактерий к гентамицину, плазмиду, несущую pMG309 E. Coli и кодирующую β-лактамазу, KPC-3, на меропенеме, а также вызвал сильный антикандидозный эффект с азольными антибиотиками, такими как флуконазол и кетоконазол. [51]

Еще один механизм действия ментола реализован в препарате для профилактики и лечения острых респираторных инфекций и ринита в Масле Дыши. Эфирные масла входящие в его состав, такие как масла перечной мяты, эвкалипта, каепута показали антибактериальную активность в отношении устойчивого золотистого стафилококка (MRSA) и ванкомицин-резистентного Enterococcus. [20]. Эта активность может быть результатом высокого содержания монотерпенов в его составе, особенно ментола, которые влияют на текучесть и проницаемость клеточной мембраны патогенов.

Каепутовое эфирное масло

Сырье для каепутового эфирного масла

Масло каепута получают из листьев и небольших ветвей дерева каепут (Melaleuca leucadendron L.), которое принадлежит к семейству миртовых и произрастает в Юго-Восточной Азии и Северо-Восточной Австралии [21]. На поверхности листьев видны резервуары с маслом, благодаря чему листья очень ароматны. Их запах ассоциируется с камфорой, розмарином и кардамоном [23]. Эфирное масло каепута получают как из дикорастущих растений, так и из выращиваемых на плантациях. Его получают в результате паровой перегонки из свежих веточек. Содержание эфирного масла каепута составляет 1,5–3,0% [24].

Химический состав каепутового эфирного масла

Антимикробная активность каепутового эфирного масла

Эфирное масло гвоздики

Сырье для эфирного масла гвоздики

Эфирное масло гвоздики получают из гвоздики пряной (Eugenia caryophyllata Thunb). Род Eugenia (Syzygium) принадлежит к семейству Myrtaceae. Родина гвоздики – Молуккские острова (Индонезия) [27]. Сырье, из которого получают эфирное масло – это неразвитые цветочные почки Eugenia caryophyllata Thunb, которые после измельчения подвергают паровой дистилляции в течение 9–24 ч. Выход эфирного масла высокий и составляет 15–20%. [28].

Химический состав эфирного масла гвоздики

В настоящее время идентифицировано около 100 соединений, входящих в состав этого эфирного масла. Доминирующим компонентом эфирного масла гвоздики является эвгенол, содержание которого колеблется от 30 до 95% [29]. Химический состав зависит от происхождения масла и степени развития листьев или смолы. Масло листьев отличается от масла бутонов низким содержанием эвгенил ацетата. Польская фармакопея определяет содержание в эфирном масле следующих компонентов: β-кариофиллена (5–14%), эвгенола (75–88%) и эвгенола ацетата (4–15%) [4, 5, 9]

Антимикробная активность эфирного масла гвоздики

Противовирусная активность эвгенола, основного компонента эфирного масла гвоздики, была протестирована против вирусов герпеса (HSV-1 и HSV-2). Дополнительные исследования выявили синергетическое взаимодействие в комбинации эвгенола и ацикловира, известного противовирусного препарата. Исследования показали, что применение эвгенола задерживает развитие кератита, вызванного вирусом герпеса [10].

Противомикробное действие эфирного масла гвоздики показало большую эффективность против патогенных штаммов, таких как Aeromonas hydrophila ATCC 7966 (IZr 8 мм), Candida albicans ATCC 10231 (IZr 7 мм) и Proteus mirabilis ATCC 10005 (IZr 6 мм) ЭО гвоздики также подавляет развитие микроорганизмов, таких как Bacilus subtilis, Morganella morganii, Mycobacterium phlei, Aspergillus niger и Penicillum christopherum [29].

Из-за сходства состава эфирных масел тесты антимикробной активности для гвоздики и листа корицы часто проводят параллельно. Оба эфирных масел показали сильную бактериостатическую активность при концентрациях 0,03–0,05% и бактерицидную активность при концентрациях 0,04–0,1% по отношению к S. aureus, L. monocytogenes, S. enteritidis, C. Jejuni и E. coli. Также сравнивались антимикробные свойства гвоздики, кардамона, корицы и 10% раствора фенола. Эфирное масло гвоздики в данном исследовании было самым активным.

Эвкалипт

Сырье для эфирного масла эвкалипта

Эвкалиптовое масло получают из листьев эвкалипта шаровидного (Eucalyptus globulus Labill) [9], который принадлежит к семейству миртовых и является доминирующим растением в лесах Австралии [30].

Химический состав эфирного масла эвкалипта

Антимикробная активность эфирного масла эвкалипта

Выводы

Мы рассмотрели несколько самых изученных на текущий момент эфирных масел, активных в отношении бактерий и вирусов. Из-за их высокой летучести эффективное время действия эфирных масел ограничено, с другой стороны, низкий уровень токсичности, а также естественное происхождение делают их привлекательными для применения в медицинской практике. Целесообразность для борьбы с инфекционными возбудителями уже не вызывает сомнения.

В борьбе с пандемией поможет технология, поддержанная Philip Morris,— рекомбинантные белки

Разработки вакцин против новой коронавирусной инфекции ведутся в настоящее время по всему миру. Одно из перспективных направлений, на котором уже достигнуты первые успехи,— наработка рекомбинантных белков в растениях. Созданные с помощью таких технологий вакцины и фармацевтические препараты могут использоваться и уже используются в борьбе со многими вирусными инфекциями.

Фитотехнологии — быстрорастущий во всех смыслах сектор фармацевтической промышленности

Фитотехнологии — быстрорастущий во всех смыслах сектор фармацевтической промышленности

Фото: Mint Images / Getty Images

Фитотехнологии — быстрорастущий во всех смыслах сектор фармацевтической промышленности

Фото: Mint Images / Getty Images

Ростки надежды

Канадская биофармацевтическая компания Medicago объявила в марте об успешном производстве вирусоподобной частицы (VLP) коронавируса всего через 20 дней после получения гена SARS-CoV-2 (штамма вируса, вызывающего коронавирусную инфекцию COVID-19). Получение вирусоподобной частицы — первый шаг к разработке вакцины против COVID-19, которая затем должна пройти доклинические испытания на безопасность и эффективность. По их завершении Medicago планирует обсудить с органами здравоохранения планы проведения клинических испытаний вакцины-кандидата с участием добровольцев уже в июле-августе этого года. Компания планирует завершить программу разработки вакцины и передать ее результаты властям к ноябрю 2021 года. В случае если вакцина будет одобрена, начнется ее серийное производство. По утверждению генерального директора Medicago Брюса Кларка, компания способна будет производить до 10 млн доз вакцины в месяц.

Космический табак

Параллельно с разработкой вакцины Medicago в сотрудничестве с Научно-исследовательским центром инфекционных заболеваний Университета Лаваля (Квебек, Канада) ведет исследовательские работы с антителами SARS-CoV-2. Созданные на основе этих антител лекарственные средства могут быть использованы для лечения людей, инфицированных коронавирусом.

Medicago — латинское название люцерны. С экспериментов с этим растением началась история созданной в 1999 году компании. В 2009 году компания всего за 19 дней разработала вакцину-кандидат исследовательского уровня против вируса H1N1, так называемого свиного гриппа. В 2012 году Medicago в течение одного месяца произвела 10 млн доз моновалентной вакцины против гриппа по заказу DARPA (Управление перспективных исследовательских проектов Министерства обороны США). А в 2015 году в сотрудничестве с Университетом Лаваля компания в кратчайшие сроки разработала терапию на основе моноклональных антител против вируса Эбола. В настоящее время Министерство здравоохранения Канады рассматривает заявку на одобрение к применению созданной Medicago четырехвалентной вакцины на основе VLP против сезонного гриппа, прошедшей проверку на безопасность и эффективность.

Medicago — первопроходец и один из мировых лидеров в области систем синтеза и накопления рекомбинантных белков с использованием растений. Компания и ее сотрудники владеют многочисленными патентами, основанными на такой технологии: например, на получение с ее помощью вирусоподобной частицы вируса бешенства и химерных вирусоподобных частиц, содержащих мегагглютинин, сходный с вирусом гриппа.

Как устроена растительная биофабрика

В настоящее время в фармакологии широко применяются технологии наработки рекомбинантных белков (то есть созданных с помощью генной инженерии с нужными заданными свойствами) в растении. Растения используются как своеобразная биологическая фабрика, производящая нужный продукт — белок.

В сфере фитобиотехнологий отмечен пятикратный рост за десять лет

О достижениях и перспективах российской и мировой науки по использованию растений в фармацевтических исследованиях

Компания Medicago использует в своих разработках табак Бентама (Nicotiana benthamiana), принадлежащий к тому же, что и обычный табак (Nicotiana tabacum), семейству пасленовых.

Генетическая информация закладывается в агробактерии Agrobacterium tumefaciens, способные переносить фрагменты ДНК в растительную клетку. Растение действует как миниатюрный биореактор, производящий вирусоподобные частицы в своих листьях. Затем выделенные из растения VLP используются в производстве вакцины.

Производственный цикл Medicago составляет всего шесть недель, что намного быстрее традиционного процесса производства вакцин на основе куриных яиц, длящегося шесть месяцев.

В системах синтеза и накопления рекомбинантных белков (экспрессионных системах) могут использоваться не только растения, но и бактерии, дрожжи, культуры клеток насекомых и млекопитающих. Системы с использованием растений обходят всех конкурентов по такому показателю, как чистота финального продукта. В растительных тканях нет риска загрязнения рекомбинантного белка вирусами животных и прионами — инфекционными белками. Среди других преимуществ — простота, скорость производства и высокий выход конечного продукта. Быстрота создания вакцины важна при борьбе с сезонным гриппом, вирусы которого быстро мутируют. Но важнейшее значение скорость разработки имеет в случае появления новых штаммов вируса, повышающих риск пандемии.


Компания Medicago в своих исследованиях не использует продукты животного происхождения и живые вирусы. Вместо этого она работает с вирусоподобными частицами, повторяющими форму и размеры вируса. Это позволяет организму распознавать их и выдавать иммунный ответ без развития инфекции. Согласно данным клинических исследований, вакцины, созданные с использованием технологии вирусоподобных частиц, отличаются от неактивированных вакцин многомодальным механизмом действия, благодаря чему активизируются сразу обе сферы иммунной системы — гуморальный и клеточный иммунный ответ.

Братство табаков

В 2008 году табачный гигант Philip Morris International (PMI) инвестировал в Medicago 15,975 млн канадских долларов, в 2013 году вложил еще 13,164 млн канадских долларов. В настоящее время PMI принадлежат 30% акций Medicago, а 60% акций владеет японская фармацевтическая компания Mitsubishi Tanabe Pharma.

Николай Иванов

Фото: Филип Моррис Интернэшнл

У технологии Medicago с использованием табака Бентама есть еще одно важное преимущество: в случае одобрения вакцины против COVID-19 регуляторными органами компании будет очень легко нарастить большие объемы производства. Для этого просто нужно больше растений.

Читайте также: