Биологические средства инфекции заболеваний

Обновлено: 25.04.2024

Прошло много лет с тех пор, как, пытаясь обезопасить себя от натуральной оспы, китайцы стали вкладывать в ноздри высушенные оспенные струпья, а индейцы — втирать их в надрезы кожи. Только Э.Дженнер (эмпирически) и Л.Пастер (научно) разработали основы создания и применения предохранительных прививок из живых микробов. Первыми в 1880–1885 гг. Л.Пастер получил вакцины против куриной холеры, сибирской язвы и бешенства. Вакцины — биопрепараты для создания у людей иммунитета к инфекционным заболеваниям. Корпускулярные вакцины содержат аттенуированные или убитые микробы (вирионы), некорпускулярные — продукты их химического расщепления (химические вакцины), обезвреженные экзотоксины бактерий или яды (анатоксины). Вакцины различаются по числу антигенов, входящих в их состав: моновакцины и поливакцины (ассоциированные). По видовому составу вакцины могут быть бактериальными, вирусными, риккетсиозными.

Убитые вакцины (моно- и поли-) используются для профилактики тифа, паратифов, коклюша, холеры, лептоспироза, дизентерии, гриппа, полиомиелита, клещевого энцефалита и др. Эти вакцины отличаются невысокой иммуногенностью, создают непродолжительный иммунитет (до 1 года), вероятно из-за технологической денатурации антигенов.

Полные антигены микробов, очищенные от примесей, представляют собой химические вакцины. Они характеризуются низкой реактогенностью, по эффективности превосходят убитые вакцины. Применяются для профилактики брюшного тифа, паратифов А и В (вакцина ТАВte со столбнячным анатоксином), коклюша, туберкулеза.

Анатоксины (столбнячный, дифтерийный, гангренозный, ботулинический, стафилококковый) — мало реактогенны, способны формировать напряженный иммунитет на 4–5 лет.

В настоящее время в распоряжении врача насчитывается около 30 вакцин. К антибактериальным относится 16 (дифтерийная, коклюшная, бруцеллезная, туляремийная, чумная, сибиреязвенная, туберкулезная и др.), к противовирусным — 8 (против натуральной оспы, бешенства, гриппа, полиомиелита, кори и др.). Кроме этого, успешно используются две риккетсиозные (сыпной тиф, Ку-лихорадка) и антилептоспирозная вакцины. Перспективным является создание синтетических, рекомбинантных и антиидиотипических вакцин.

Фаги представляют собой вирусы, способные проникать в бактериальную клетку, репродуцироваться и вызывать ее лизис. Бактериофаги применяются для фагопрофилактики и фаготерапии инфекционных заболеваний. Преимущество фаготерапии заключается в возможности избирательного лизирования определенных микробов и безвредности для пациента. Назначают бактериофаги при различных кишечных инфекциях, дисбактериозе, гнойных инфекциях и др. Возможно сочетание фаго- и химиотерапии.

Разновидности вакцин. Биологические препараты против инфекций

Первые живые вакцины были получены Л. Пастером против сибирской язвы (1881 г.) и бешенства (1885 г.). В 1926 году французские ученые А. Кальметт и К. Герен предложили вакцину против туберкулеза БЦЖ (BCG) Огромную работу по получению живых вакцин в советский период проделали отечественные ученые. Вакцину против натуральной оспы получил М.А. Морозов (1941-1960 гг.), против гриппа А.А. Смородинцев, В.Д. Соловьев, В.М.Жданов (1960 г.), против бруцеллеза П.А. Вершилова (1947-1951 гг.), против туляремии Г.Я. Эльберт, Н.А. Гайский, против чумы М.П. Покровская, против полиомиелита М.П Чумаков, против гепатита В В.М. Жданов, В.А. Ананьев, против гепатита А М.С. Балоян и др.

Убитые вакцины приготовляют из микроорганизмов, убитых нагреванием или химическим воздействием (фенол, формалин, ацетон). Убитые вакцины применяют при тех ИБ, при которых не удалось получить живые ослабленные (аттенуированные) вакцины, которые дают более стойкий иммунитет. К числу убитых вакцин относятся вакцины против брюшного тифа, паратифа В, холеры, коклюша, клещевого энцефалита, полиомиелита. Наряду с убитой получена живая вакцина против полиомиелита, дающая более стойкий иммунитет.

Химические вакцины были впервые получены в нашей стране Н.И. Александровым и Н.Е Гефеном (1941 г.) против кишечных инфекций и столбняка (ассоциированная вакцина НИИСИ).

Анатоксины получены Г. Рамоном (1923-1926 гг.) из соответствующих экзотоксинов бактерий обработанных формалином. Они лишены токсигенных свойств, но сохранили иммуногенность. При парентеральном введении их в организме образуются антитоксины. Анатоксины применяют для профилактики дифтерии, столбняка, ботулизма, анаэробной гангрены, стафилококковых инфекций.

разновидности вакцин

Для лечения гнойносептических заболеваний, вызванных стафилококками и стрептококками, возможно получение аутовакцин. Наиболее эффективными являются аутовакцины, приготовленные из штаммов возбудителей, выделенных от больного, которому предполагается вакцинотерапия.

Кроме препаратов (вакцин и анатоксинов), создающих активный иммунитет, имеются иммунопрепараты (антитоксические сыворотки и иммуноглобулины), содержащие готовые антитела (в достаточном титре), которые применяют для лечения больных и для экстренной профилактики инфекционных болезней.

Антитоксические гипериммунные сыворотки крови специально иммунизированных животных (лошадей) или иммунных людей содержат защитные антитела (иммуноглобулины), которые создают иммунитет благодаря их циркуляции в крови до 4-6 недель.

Бактериофаги - вирусы бактерий. Они внедряются в бактериальную клетку, размножаются в ней и вызывают ее лизис В организме человека сохраняются несколько дней. Бактериофаги применяют для лечения и профилактики некоторых ИБ. Отечественная промышленность выпускает следующие бактериофаги' брюшнотифозный, сальмонеллезный, холерный, коли-протейный, дизентерийный, стафилококковый и др. Наибольшей активностью отличаются бактериофаги, к которым определена чувствительность (степень лизируемости) выделяемых от больного штаммов бактерий. Возможна также намеренная искусственная адаптация бактериофага к выделенному от больного штамму возбудителя.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.


Обзор

Автор
Редактор

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Клин клином выбивают.

Народная мудрость

Биотехнология — медицине

В современной медицинской практике используется большое количество средств, получаемых благодаря жизнедеятельности микроорганизмов. Сюда относятся витамины, ферменты, генно-инженерные гормоны и интерфероны, заменители крови и, конечно же, антибиотики. Собственно, даже медицинский спирт — этот универсальный антисептик, народный анальгетик и антидепрессант — является продуктом бродильного метаболизма дрожжевых грибков. Традиционные и новые высокоэффективные, различные по структуре и механизму действия природные и химически модифицированные лекарственные препараты, в создании которых участвовали микроорганизмы, применяются для лечения различных заболеваний.

Когда лекарство опаснее болезни

В практике применения лекарственных средств врачу приходится встречаться с так называемыми побочными явлениями, которые могут развиваться наряду с основным действием лекарства и ограничивать возможности его применения. Побочные реакции особенно часто возникают в случаях применения лекарств, обладающих многосторонним фармакологическим эффектом (вспомним тот же этиловый спирт), тогда как цель лечения достигается благодаря использованию лишь некоторых сторон фармакодинамики данного лекарства.

Особенного внимания заслуживают в этом смысле антибиотики, поскольку они являются препаратами выбора при лечении большинства инфекционных заболеваний, а назначению антибиотиков далеко не всегда предшествует проведение необходимых микробиологических исследований. Нередки случаи нерационального применения антибиотиков широкого спектра действия, нарушения пациентами схем приема препаратов, а то и вовсе бесконтрольного самолечения. И даже при правильном использовании антибактериальное действие антибиотиков распространяется не только на патогенную, но и на нормальную микробную флору организма. Под действием антибиотиков гибнут бифидобактерии, лактобациллы, симбиотические штаммы кишечной палочки и другие полезные микробы. Освободившиеся экологические ниши тут же заселяют условно-патогенные бактерии и грибки (как правило, обладающие резистентностью к антибиотикам), которые до этого присутствовали на коже и в нестерильных полостях организма в незначительном количестве — их размножение сдерживалось нормальной микрофлорой. Антибиотикотерапия, например, может способствовать превращению мирных сапрофитных дрожжеподобных грибков Candida albicans (рис. 1), обитающих на слизистых оболочках полости рта, трахеи и кишечника, в бурно размножающиеся микроорганизмы, вызывающие ряд местных и общих поражений.

Candida albicans и кандидоз

В основе других побочных эффектов могут лежать индивидуальные особенности взаимодействия организма с антибиотиком: непереносимость препарата может иметь аллергическую или псевдоаллергическую природу, быть следствием ферментопатий или попадать в загадочную категорию идиосинкразий (до выяснения механизма непереносимости).

Пробиотики вместо антибиотиков?

В настоящее время перед медицинской наукой и органами охраны здоровья всего мира стоит ответственная задача — создание эффективных антибактериальных препаратов, вызывающих как можно менее выраженные побочные реакции.

Одним из возможных решений проблемы является разработка и широкое фармакотерапевтическое использование препаратов на основе живых культур представителей нормальной микрофлоры (пробиотиков) для коррекции микробиоценозов человека и для лечения патологических состояний. Применение бактериальных препаратов основано на понимании роли нормальной микрофлоры организма в процессах, обеспечивающих неспецифическую резистентность к инфекциям, в формировании иммунного ответа, а также на установлении антагонистической роли нормофлоры и ее участия в регуляции метаболических процессов [1].

Основоположником теории пробиотиков считают И.И. Мечникова. Он полагал, что сохранение здоровья человека и продление молодости во многом зависит от обитающих в кишечнике молочнокислых бактерий, способных подавлять процессы гниения и образования токсичных продуктов. Еще в 1903 году Мечников предложил практическое использование микробных культур—антагонистов для борьбы с болезнетворными бактериями.

По сравнению с традиционными антибактериальными препаратами пробиотики имеют ряд преимуществ: безвредность (однако не при всех диагнозах и не для всех пациентов — Ред.), отсутствие побочных реакций, аллергизации и отрицательного воздействия на нормальную микрофлору. В то же время авторы ряда исследований связывают прием этих биопрепаратов с выраженным клиническим эффектом при лечении (долечивании) острых кишечных инфекций. Важной особенностью пробиотиков, по некоторым данным, является их способность модулировать иммунные реакции, оказывать в ряде случаев противоаллергическое действие, регулировать пищеварение.

Биопленка

Полезный микроб — аэрококк

Некоторых аэрококков (рис. 3) относят к условно-патогенным микробам, поскольку они способны вызывать заболевания у животных (например, гаффкемию у омаров) и людей с иммунодефицитами. Аэрококки часто обнаруживаются в воздухе больничных палат и на предметах медицинского назначения, выделяются от больных со стрептококковыми и стафилококковыми инфекциями и к тому же имеют определенное морфологическое сходство с этими опасными бактериями.

Клетки и колонии аэрококков

Подавление аэрококками роста патогенных бактерий

Бактерицидные вещества аэрококков

* — Наряду с продукцией перекиси водорода (за счет НАД-независимой лактатдегидрогеназы), а в присутствии иодида калия и образованием гипойодида (за счет глутатионпероксидазы) с более выраженным, чем у пероксида водорода, бактерицидным действием, аэрококки располагают и неоксидными компонентами антагонистической активности. Они образуют низкомолекулярный термостабильный пептид аэроцин, относящийся к классу микроцинов, активный в отношении протеев, стафилококков, эшерихий и сальмонелл. Аэроцин был выделен из культуральной жидкости методами высаливания, электродиализа и бумажной хроматографии, после чего был установлен его аминокислотный состав и показана терапевтическая эффективность при экспериментальной сальмонеллезной инфекции у мышей [8]. Аэрококкам также свойственна адгезия к эпителиальным и некоторым другим клеткам, то есть противодействие патогенным бактериям идет в том числе на уровне биопленок и колонизационной резистентности.

Лечебные вирусы

Как оказалось, в терапевтических целях может быть использовано не только явление микробного антагонизма, но и паразитизма. Патогенные бактерии паразитируют в организме человека, но и они, в свою очередь, являются хозяевами для еще более мелких паразитов — бактериофагов. Применение фагов в медицине основано на их высокой специфичности. Каждый вид фагов способен размножаться только в клетках определенной группы бактерий (рис. 6). Бактериофаги принципиально не способны повреждать человеческие клетки, и кроме того, бактерии-симбионты человека и патогенные бактерии обычно восприимчивы к разным фагам.

Бактериофаги

При лечении инфекций важно создать высокую концентрацию антимикробного препарата именно в месте локализации возбудителя. Применяя антибиотики в виде таблеток или инъекций, добиться этого довольно трудно. Но в случае фаготерапии достаточно, если в инфекционный очаг доберутся хотя бы одиночные бактериофаги. Обнаружив патогенные бактерии и проникнув в них, фаги начинают очень быстро размножаться. С каждым циклом размножения, который длится около получаса, количество фагов возрастает в десятки, а то и сотни раз. После разрушения всех клеток возбудителя фаги более не способны размножаться и, благодаря своим мелким размерам, беспрепятственно выводятся из организма вместе с другими продуктами распада.

Пробиотики и фаги вместе

Транслокация бактерий из кишечника

Бактериофаги хорошо зарекомендовали себя в профилактике и лечении кишечных инфекций и гнойно-воспалительных процессов. Возбудители этих заболеваний часто приобретают устойчивость к антибиотикам, но остаются чувствительными к фагам [10]. В последнее время ученых заинтересовала перспектива совместного использования бактериофагов и пробиотиков. Предполагается, что при назначении такого комплексного препарата сначала фаг уничтожает патогенные бактерии, а потом освободившуюся экологическую нишу заселяют полезные микроорганизмы, формируя стабильный микробиоценоз с высокими защитными свойствами. Такой подход уже был опробован на сельскохозяйственных животных [11]. Вероятно, он войдет и в медицинскую практику.

Статья написана при участии Юргель Л.Г. и Кременчуцкого Г.Н.

От редакции

Результаты исследований подобных веществ, какими бы потрясающими они ни были, должны подтверждаться соответствующим образом: препарат должен пройти необходимые фазы клинических испытаний, чтобы медицинское сообщество могло признать его безопасным и эффективным лекарственным средством, и лишь после этого рекомендовать пациентам. Естественно, речь идет об испытаниях по международным нормам, а не так, как это иногда у нас бывает — на 12 пациентах сельского лазарета, заявивших, что им ну-просто-жуть-как-помогло. Неплохим ориентиром для врачей и пациентов было бы одобрение каких-либо пробиотических препаратов, например, американским FDA, но увы.

Пока же принимаемые внутрь пробиотики следует рассматривать не как лекарства, а как пищевые добавки. Причем заявленные производителем свойства препарата нельзя переносить на другие пробиотики: критичны штамм (не род и даже не вид) и количество колониеобразующих единиц. А еще нужно иметь в виду, что на такую продукцию влияет множество факторов, связанных с производством, условиями и сроками хранения, употреблением и пищеварением.

Крупнейшие контролирующие питание и лечение организации мира считают: пока не достаточно доказательств для утверждения, что пробиотики положительно влияют на здоровье (тем более всех поголовно, вне зависимости от исходного состояния этого самого здоровья). И не то чтобы контролеры были убеждены в неэффективности этих препаратов — просто, как правило, в проведенных медисследованиях они не усматривают достоверной причинно-следственной связи приема пробиотиков с позитивными изменениями. А еще стоит помнить о тех исследованиях, где какой-то пробиотик оказывался неэффективным или даже влиял отрицательно.


Обзор

Споры сибирской язвы под микроскопом

Автор
Редактор


Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.

SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.

Так, в 1915 году в ходе Первой мировой войны Германия и Франция перегоняли зараженный сибирской язвой скот — лошадей и коров — на сторону противника [1].

А в 1940-х годах на британской экспериментальной станции Портон-Даун доктор Пол Филдс определил, что наиболее эффективный способ применения сибирской язвы как биологического боевого агента — распыление частиц при взрыве бомбы. В 1942 году он провел серию экспериментов с бактериологическим оружием на пустынном шотландском острове Грюинард (рис. 1), куда доставили отару овец, после чего туда же сбросили бомбы, начиненные спорами сибирской язвы. Все овцы погибли в течение нескольких дней, а земля острова на протяжении долгих десятилетий оставалась зараженной и непригодной для жизни [2].

Остров Грюинард

Рисунок 1. Остров Грюинард

Военный городок Свердловск-19, 1979 год. Внезапная вспышка сибирской язвы унесла жизни 64 людей — и это только по официальным данным. По неофициальным (со слов врачей и пациентов) — не меньше сотни. Подавляющее большинство инфицированных были мужчинами средних лет. Годы спустя президент Борис Ельцин признал, что причиной эпидемии стали секретные разработки, а именно — случайная утечка бактерий из военной лаборатории [3].

Итак, что же в сибиреязвенных спорах так привлекает биотеррористов, и что делает возбудителя сибирской язвы потенциальным биологическим оружием?

С точки зрения бактериологии

Bacillus anthracis

Рисунок 2. Bacillus anthracis. В инфицированной крови или тканях бациллы часто присутствуют в виде коротких цепочек, окруженных полипептидной капсулой.

Грамположительные бактерии — те, что при окраске микроорганизмов по методу Грама приобретают темно-синий цвет и не обесцвечиваются при обработке спиртом. Такая окраска позволяет разделить бактерии по биохимическим свойствам: у грамположительных бактерий спирт вызывает сужение пор в пептидогликане (это полимер в стенках бактериальных клеток), за счет чего краска задерживается в клеточной стенке. Грамотрицательные бактерии, напротив, после воздействия спиртом утрачивают краситель из-за меньшего содержания пептидогликанов [4].

Что касается спор, эти особые формы бактериальных клеток служат для репродукции и/или переживания неблагоприятных условий, то есть хорошо сохраняются во внешней среде (важное свойство для биологического оружия). Они устойчивы к высоким температурам, радиации, высушиванию, действию растворителей и прочих губительных факторов. Более того, споры B. аnthracis могут переносить даже десятиминутное кипячение и сохраняются в почве десятки лет (что демонстрирует случай с островом Грюинард) [2]. В организме животного, которое имело несчастье пастись на такой земле, споры прорастают и вызывают сибирскую язву.

Что насчет патогенеза?

Патогенность B. аnthracis связана со способностью продуцировать токсины — отечный и летальный — и образовывать бактериальную капсулу.

Патогенные свойства B. anthracis кодируются двумя плазмидами: pXO1 отвечает за биосинтез токсинов, а pXO2 кодирует компоненты капсулы. Обе плазмиды необходимы для полной вирулентности (способности к инфицированию), и потеря любой из них приводит к ослаблению штамма.

Небольшая справка

Бактериальные плазмиды — это кольцевые молекулы ДНК, обособленные от хромосом (рис. 3). Они содержат дополнительные гены, необходимые только в специфических условиях для выживания клетки.

Генетический аппарат бактерий

Рисунок 3. Генетический аппарат бактерий. Цифрой 1 обозначена бактериальная ДНК, 2 — обособленные от нее плазмиды.

схема автора статьи

Существует несколько основных групп плазмид.

Col-плазмиды отвечают за синтез белков, действующих против других бактерий (такие вещества называются бактериоцинами). Эти белки вызывают гибель бактерий того же вида (или родственных ему), но не действуют на сами клетки, выделяющие данные вещества.

F-плазмиды (факторы фертильности) ответственны за половой процесс у бактерий. Его обусловливает наличие F-пилей — нитей белковой природы — и их способность к конъюгации, то есть переносу части генетического материала от одной бактериальной клетки к другой при их непосредственном контакте.

R-плазмиды (факторы резистентности) отвечают за устойчивость к действию антибиотиков и сульфаниламидных препаратов (бактериостатиков) — лекарств с противомикробным действием [5–7].

D-плазмиды определяют синтез ферментов, обеспечивающих расщепление углеводородов нефти и других трудноусваиваемых соединений [8].

Однако вернемся к сибирской язве. Плазмида pXO1 кодирует три компонента сибиреязвенных токсинов (рис. 4). Фактор отека (EF) вызывает местную воспалительную реакцию — собственно, отек; протективный антиген (PA) обладает иммуногенным действием, то есть способностью вызывать иммунный ответ организма. И третий фактор — летальный (LF) — нарушает внутриклеточный синтез макромолекул, что приводит к некрозу и разрушению клеток, в первую очередь — макрофагов. Каждый из этих факторов по отдельности не обладает патогенным действием, но сочетание протективного и летального факторов образует летальный токсин, а протективного и отечного — отечный токсин [2], [9–11].

Плазмиды B. anthracis

Рисунок 4. Плазмиды B. anthracis и продукты их синтеза. Регулятор AtxA, кодируемый плазмидой pXO1, контролирует синтез компонентов токсинов сибирской язвы со своей же плазмиды и компонентов капсулы с pXO2. Компоненты EF (фактор отека), LF (летальный фактор) и PA (протективный антиген) собираются в токсины ETx (отечный токсин) и LTx (летальный токсин), вызывая в целевых клетках-хозяевах отек и смерть соответственно. Компоненты капсулы ABCDE взаимодействуют на мембране бактериальной клетки с образованием поли-гамма-D-глутаматной капсулы, которая защищает клетки B. anthracis от уничтожения фагоцитами во время инфекции. PAI — остров патогенности в составе плазмиды.

Виды сибирской язвы

Сибирская язва существует в четырех формах: кожная, желудочно-кишечная, легочная и инъекционная [2], [12], [13].

Кожная форма является самой распространенной и наименее опасной. Она возникает при проникновении бактерий через поврежденную кожу — порез или царапину — при контакте с больным животным или продуктами животного происхождения. В течение двух-трех дней после заражения на коже развивается папула (вид кожной сыпи), которая затем окружается кольцом из везикул (воспалительных элементов сыпи) и, наконец, высыхает. Обычно к 5–6 дню из нее образуется похожий на уголь черный карбункул: он безболезнен и окружен отеком (рис. 5). Без лечения до 20% людей с кожной сибирской язвой погибает от сепсиса, однако при правильном лечении выживают почти все пациенты.

Кожная форма сибирской язвы

Рисунок 5. Кожная форма сибирской язвы

Желудочно-кишечная сибирская язва проявляется при употреблении в пищу сырого или недоваренного мяса зараженного животного. Инфекция так же развивается в течение недели. Характерный карбункул чаще всего встречается на стенке терминальной подвздошной или слепой кишки, однако могут быть поражены и ротоглотка, желудок, двенадцатиперстная кишка и верхняя подвздошная кишка. Желудочно-кишечная сибирская язва имеет две клинические формы: брюшную и пищеводную. При брюшной форме начальные симптомы — тошнота, рвота и лихорадка. По мере прогрессирования заболевания возникают сильные боли в животе, кровоизлияние и диарея с кровью, за которыми следуют сепсис и смерть. Все это — результат тяжелого и широко распространяющегося некроза начального отдела кишечника. При пищеводной форме сибирской язвы симптомы включают боль в горле, нарушение глотания, лихорадку, увеличение лимфоузлов в области шеи и отечность. Из-за таких неспецифических проявлений трудно поставить верный диагноз, что приводит к высокой смертности: умирает более половины пациентов. Однако при правильном лечении выживаемость может достигать 60%.

Самая смертоносная форма сибирской язвы — легочная: она возникает при вдыхании спор В. anthracis. Болезнь начинается коварно — с похожих на грипп симптомов: легкой температуры, усталости, недомогания, боли в мышцах и непродуктивного кашля. Начальная стадия длится около 48 часов, после чего резко сменяется развитием острой фазы. Появляются сильная одышка, тахикардия, учащенное свистящее дыхание, влажные хрипы, лихорадка и посинение кожи (цианоз). В конечном итоге пульс становится очень быстрым и слабым, одышка и цианоз прогрессируют, затем быстро наступают кома и смерть. Без лечения выживает только 10–15% пациентов, однако при агрессивном лечении выживаемость может повышаться и до 55%.

Не так давно была обнаружена новая, инъекционная, форма сибирской язвы в среде героиновых наркоманов. Ее симптомы иногда напоминают кожную форму, однако инфекция в этом случае локализуется глубоко под кожей или в мышце — в зависимости от того, куда была сделана инъекция.

Ни одна из форм сибирской язвы не заразна. Это означает, что болезнь не передается от человека к человеку, как простуда или грипп, — инфицирование может происходить только одним из означенных выше способов [13].

Вскрытие покажет

Лечение и профилактика

Для лечения всех форм сибирской язвы ВОЗ рекомендует интенсивную поддерживающую терапию и антибиотикотерапию. В качестве антибиотика, как правило, выступает знаменитый пенициллин. В тяжелых случаях его комбинируют со фторхинолонами (ципрофлоксацином или левофлоксацином) или макролидами (клиндамицином или кларитромицином). Также могут использоваться и другие антибиотики широкого спектра. При заражении самой опасной, легочной, формой сибирской язвы в ход идет тяжелая артиллерия: гемодинамическая поддержка, искусственная вентиляция легких, назначение кортикостероидов. Очень важно начать своевременное лечение, чтобы уничтожить бактерии раньше, чем их токсины попадут в кровоток [15].

Также при лечении сибирской язвы используют человеческие моноклональные (происходящие от одной клетки-предшественницы) антитела: раксибакумаб и обилтоксаксимаб. Оба препарата связывают протективный антиген (PA), в результате чего нейтрализуются оба сибиреязвенных токсина. Это происходит из-за того, что PA играет ключевую роль в сборке токсинов и поражении клеток-мишеней. Препараты рекомендованы для лечения легочной формы сибирской язвы в сочетании с антибактериальной терапией [17], [18].

Лечение сибирской язвы проводится в течение 3–7 дней при неосложненной кожной форме и 10–14 дней — при системной инфекции, которая охватывает весь организм. Если заболевание — результат биотерроризма, длительность лечения, по рекомендациям ВОЗ, может возрастать до 60 дней. В таком случае назначают ципрофлоксацин или доксициклин с тремя дозами вакцины против сибирской язвы (или же без нее) [15].

Почему различаются курсы лечения инфекций, возникших естественным путем и вызванных искусственно? Дело в том, что искусственные инфекционные болезни обладают самостоятельными клиническими аспектами, этиологией и эпидемиологией. Для заражения злоумышленники могут использовать усовершенствованные штаммы микроорганизмов: с повышенной вирулентностью, устойчивостью к отдельным лекарствам и способностью преодолевать иммунитет, возникший в результате вакцинации. О том, что заболевание вызвано воздействием биологического оружия, могут говорить невозможные эпидемиология и клиническая форма болезни. Проще говоря, можно заподозрить биотерроризм, если в природе не существует условий для развития данного эпидемического процесса, либо подобной клинической картины не наблюдается при естественном заражении. Например, существует патология мелкодисперсного аэрозоля: поражение глубоких отделов легких, вызванное проникновением инфекционных агентов размером менее 5 мкм. Эту патологию может вызвать только целенаправленное распыление биологических частиц из аэрозоля с дисперсной фазой 1–5 мкм [19].

Против сибирской язвы существуют и вакцины (см. табл.).

Несмотря на уже существующие вакцины, разрабатывают и новые — с расчетом на то, что они окажутся более безопасными и эффективными [21]. Однако ни одной вакцины нет в свободном доступе, и ВОЗ рекомендует их только для групп риска — людей, чья деятельность связана с высоким риском инфицирования: ветеринарам, некоторым лабораторным работникам и военнослужащим. Например, с 2015 года вакцину получают сотрудники Министерства обороны США и члены их семей [15].

Идеальное биологическое оружие?

Если сравнить, скажем, B. anthracis и Y. pestis — возбудителя чумы — то окажется, что B. anthracis обладает некоторыми преимуществами — разумеется, в качестве биологического оружия. Так, мы уже говорили о том, что возбудитель сибирской язвы крайне устойчив во внешней среде и может храниться в почве десятилетиями. По сравнению с ним, Y. pestis обладает небольшой устойчивостью: при низкой температуре чумная палочка сохраняется в почве до 28 суток, при высокой — быстро погибает. В выделениях больных людей и животных Y. pestis может сохраняться довольно продолжительное время (что, опять же, зависит от температуры и наличия других бактерий), но обычно не больше месяца. В крови больных животных возбудитель чумы сохраняется до 260 суток, а в замороженных человеческих трупах — 4–5 месяцев [23]. В отличие от B. anthracis, Y. pestis не образует споры.

Clostridium botulinum, возбудитель ботулизма, во многом похож на B. anthracis: это тоже грамположительная спорообразующая бактерия, обитающая в почве. В чем-то C. botulinum даже более устойчив: он выдерживает кипячение до 6 часов, тогда как B. anthracis — только 10 минут. Ботулинический токсин — самый сильный из всех биологических ядов, однако для его продуцирования нужны строго анаэробные условия, а возбудитель сибирской язвы может существовать в любой среде [8].

Читайте также: