Клубеньковая бактерия это паразит или симбионт

Обновлено: 13.05.2024

Азотфикса́ция, или азотофиксация, — фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве.

Ризосфе́ра — узкий участок почвы, прилегающий к корням растения и попадающий под непосредственное действие корневых выделений и почвенных микроорганизмов. Почва, не являющаяся частью ризосферы, называется основной почвой (англ. Bulk soil). В ризосфере содержится множество бактерий которые, питаются отшелушивающимися клетками, а также белками и сахарами. Кроме того, в ризосфере обитают многочисленные протисты и нематоды, питающиеся бактериями. Таким образом, большая часть круговорота питательных веществ.

Актинобактерии (лат. Actinobacteria, от актино- + bacteria бактерии) — тип грамположительных бактерий с высоким содержанием гуанина и цитозина, который включает как одноимённый класс, так и 5 других классов. Могут быть наземными, либо водными обитателями. Актинобактерии — доминантный тип бактерий. Было предложено классифицировать актинобактерии по РНК, либо по анализу глутаминсинтетазы.

Гамма-протеобактерии (лат. Gammaproteobacteria) — класс грамотрицательных бактерий типа протеобактерий, в который входят некоторые группы, важные в медицинском, экологическом и научном плане. Сюда же относят чрезвычайно большое количество патогенных микроорганизмов.

Упоминания в литературе

Напомним, что включение азота в соединения, могущие использоваться организмами, называется фиксацией. Среди азотфиксаторов наибольшее практическое значение имеют микроорганизмы, живущие в симбиозе с растениями. Известно 200 видов растений, на корнях которых могут развиваться клубеньковые бактерии , усваивающие азот из воздуха. Бактерии Bact. Radicicola обитают на корнях бобовых культур – клевера, люцерны, гороха, сои, люпина. Выяснено, что количество азота, поступающего в растения от клубеньковых бактерий, составляет в некоторых случаях до 50–80 % от общего количества азота, усвоенного растениями. В гидросфере ежегодно фиксируется около 10 млн т азота.

Среди овощных культур горох – самый богатый источник белковых веществ, содержащих ценные аминокислоты: цистин, лизин, триптофан, аргинин, метионин. В этом растении много аскорбиновой кислоты, имеются каротин, витамины группы В и другие, углеводы, клетчатка. Зеленый горошек отличается питательностью, хорошими вкусовыми качествами, усвояемостью. Питательная ценность гороха в 1,5 – 2 раза выше, чем картофеля и других овощей, кроме того, горох богат солями калия, фосфора, железа и кальция. Немаловажное значение имеет горох в агротехнике как накопитель азота в почве при помощи клубеньковых бактерий .

Связанные понятия (продолжение)

Бациллы (лат. Bacillus) — обширный (около 217 видов) род грамположительных палочковидных бактерий, образующих внутриклеточные споры. Большинство бацилл — почвенные редуценты. Некоторые бациллы вызывают болезни животных и человека, например сибирскую язву, токсикоинфекции (Bacillus cereus). Типовой вид — сенная палочка (Bacillus subtilis)typus.

Корневые клубеньки встречаются на корнях растений (преимущественно у семейства бобовых), которые ассоциированы с симбиотическими азотфиксирующими бактериями.

Оомицеты (лат. Oomycota, Oomycetes) — группа мицелиальных организмов, включающая 70 родов и 570 видов. Ранее относилась к грибам (фикомицетам), позже была переведена из царства Fungi в Protista (по другой системе в царство Chromista). Обитают преимущественно в водной среде, где вызывают раневые инфекции рыб или являются сапротрофами. Другие являются паразитами высших растений, в частности, к оомицетам относится Phytophthora infestans, вызывающая фитофтороз картофеля, ставший одной из причин катастрофического.

В структуре наземных биоценозов значительную роль играет почвенная микрофлора. Микроорганизмы способствуют разложению мертвых органических веществ до минеральных, т. е. участвуют в процессе, без которого нормальное существование биоценозов было бы невозможным.

Слизевики́ — полифилетическая группа организмов, в современной систематике относимых к разным таксонам простейших, классификация которых ещё окончательно не разработана. Насчитывает около 1000 видов.

Хламидомона́да (лат. Chlamydómonas) — род одноклеточных зелёных водорослей из семейства Хламидомонадовые (Chlamydomonadaceae).

Азотоба́ктер (лат. Azotobacter) — род бактерий, живущих в почве и способных в результате процесса азотфиксации переводить газообразный азот в растворимую форму, доступную для усваивания растениями.

Вторичные метаболиты — органические вещества, синтезируемые организмом, но не участвующие в росте, развитии или репродукции.

Миксотро́фы (от др.-греч. μῖξις — смешение и τροφή — пища, питание) — организмы, способные использовать различные источники углерода и доноры электронов. Миксотрофы могут быть одновременно фототрофами и хемотрофами, литотрофами и органотрофами. Миксотрофами являются представители как прокариот, так и эукариот.Примером организма с миксотрофным получением углерода и энергии является бактерия Paracoccus pantotrophus из семейства Rhodobacteraceae — хемооргано-гетеротроф, также способная существовать.

Фуза́риум, или Фуза́рий (Fusarium) — род преимущественно анаморфных аскомицетовых грибов. Телеоморфы ранее относились к родам Haematonectria и Gibberella.

Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические вещества из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная водоросль эвглена зелёная на свету является автотрофом, а в темноте.

Спо́ры (от др.-греч. σπορά — сеяние, посев) — общий термин для репродуктивных структур грибов (Fungi). Споры грибов возникают в результате бесполого размножения или полового процесса и служат для размножения.

Актиномицеты (устар. лучистые грибки) (от актино- + мицеты) — порядок бактерий, имеющих способность к формированию на некоторых стадиях развития ветвящегося мицелия, которая проявляется у них в оптимальных для существования условиях. Некоторые исследователи, подчёркивая бактериальную природу актиномицетов, называют их аналог грибного мицелия тонкими нитями; их диаметр 0,4—1,5 мкм. Актиномицеты имеют кислотоустойчивый (англ. acid fast) тип клеточной стенки, которая окрашивается по Граму как грамположительная.

Азоспири́ллы (лат. Azospirillum) — род бактерий из семейства Rhodospirillaceae класса альфа-протобактерий. Эти бактерии способствуют фиксации азота корнями растений, что отражено в префиксе azo- (с французского — азот), что повышает способность корней удерживать воду и усиливает рост корневой системы в целом,

Аэро́бы (от греч. αηρ — воздух и βιοζ — жизнь) — организмы, которые нуждаются в свободном молекулярном кислороде для процессов синтеза энергии, в отличие от анаэробов. К аэробам относятся подавляющее большинство животных, все растения, а также значительная часть микроорганизмов.

Ассимиля́ция (уподобление) — совокупность процессов биосинтеза органических веществ с затратой энергии в живом организме. Биосинтез высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, липидов). Невозможна без энергии. Синоним слова анаболизм.

Протеобактерии (лат. Proteobacteria) — наиболее многочисленная группа бактерий — 1534 вида или примерно треть от всех известных видов бактерий.

Хроми́сты (лат. Chromista) — большая группа эукариот, которой многие современные макросистематики придают ранг царства. К группе относятся организмы, чьи клетки включают другую эукариотическую клетку, в которой находится хлоропласт, а также эволюционные потомки таких организмов, утратившие эукариотического симбионта. Большинство организмов группы имеют автотрофный тип питания, остальные являются гетеротрофами или сапротрофами. Включает как микроскопические одноклеточные организмы, так и относительно.

Клубеньки — небольшие утолщения на корнях многих растений (в первую очередь бобовых), в которых находятся симбиотические азотфиксирующие бактерии. У бобовых растений это ризобии — бактерии рода Rhizobium.

Фототрофы (др.-греч. φῶς, φωτός = свет, τροϕή = питание) — это организмы, которые используют свет для получения энергии. Они используют энергию света для поддержания различных метаболических процессов. Существует распространенное заблуждение, что фототрофы должны обязательно фотосинтезировать. Многие, хотя далеко не все, действительно фотосинтезируют: они используют энергию света, чтобы преобразовывать углекислый газ в органический материал, который служит для построения их тела, или в качестве источника.

Консуме́нты (от лат. consume — употреблять) — гетеротрофы, организмы, потребляющие готовые органические вещества, создаваемые автотрофами (продуцентами). В отличие от редуцентов, консументы не способны разлагать органические вещества до неорганических.

Стрептомице́ты (лат. Streptomyces) — род бактерий семейства Streptomycetaceae порядка актиномицетов (Actinomycetales), является самым большим родом семейства (около 700 видов, но не более 835). Основными средами обитания являются почва и слои морской воды. Известны как продуценты многих антибиотиков. Streptomyces scabies является фитопатогеном — вызывает паршу картофеля; Streptomyces bikiniensis способен вызывать бактериемию человека; известны другие виды, вызывающие заболевания человека. Благодаря.

Непротеиногенные аминокислоты (также некодируемые) — аминокислоты, которые не участвуют в биосинтезе белка (не входят в состав белков), многие из них являются токсинами и ингибиторами ферментов разнообразных метаболических реакций. Известно свыше 140 природных аминокислот и, возможно, больше тысячи их комбинаций.

Гломалин — гликопротеин, вырабатываемый в большом количестве гифами и спорами грибов арбускулярной микоризы (АМ) в почве и в корнях растений. Гломалин был обнаружен в 1996 году Сарой Ф. Райт, ученой из Службы сельскохозяйственных исследований Министерства сельского хозяйства США. Название происходит от порядка грибов Гломовые.

Питательная среда — однокомпонентный или многокомпонентный субстрат, применяемый для культивирования микроорганизмов или культур клеток высших организмов.

Хлороз растений — заболевание растений, при котором нарушается образование хлорофилла в листьях и снижается активность фотосинтеза.

Бакте́рии (лат. Bacteria) — домен прокариотических микроорганизмов. Бактерии обычно достигают нескольких микрометров в длину, их клетки могут иметь разнообразную форму: от шарообразной до палочковидной и спиралевидной. Бактерии — одна из первых форм жизни на Земле и встречаются почти во всех земных местообитаниях. Они населяют почву, пресные и морские водоёмы, кислые горячие источники, радиоактивные отходы и глубинные слои земной коры. Бактерии часто являются симбионтами и паразитами растений и животных.

Болезни растений — процессы, которые протекают в растении под влиянием разных причин — возбудителей болезней и неблагоприятных условий среды, проявляются в нарушении функций (фотосинтеза, дыхания, синтеза пластических и ростовых веществ, тока воды, питательных веществ), строения организма и вызывают преждевременную гибель растения или поражения отдельных его органов.

Кренархео́ты (лат. Crenarchaeota, от др.-греч. κρήνη — ручей, ἀρχαῖος — древний) — тип в составе домена архей, включающий единственный класс Thermoprotei Reysenbach 2002. Тип выделен на основании анализа последовательностей 16S рРНК.

Резуховидка Таля может пройти полный цикл развития за шесть недель и относится к типичным эфемерам. Цветоносный побег заканчивает рост в течение трёх недель. Цветки, как правило, самоопыляются. В лабораторных условиях арабидопсис выращивают в чашках Петри, освещая ультрафиолетом, либо в теплицах.

Факультативные анаэробы — организмы, энергетические циклы которых проходят по анаэробному пути, но способные существовать при доступе кислорода, в отличие от облигатных анаэробов, для которых кислород губителен.

Зооспо́ра (др.-греч. ζῷον — животное и σπορά — посев, семя), или зоогони́дий, или бродя́жка — стадия жизненного цикла многих водорослей и некоторых низших грибов. Представляют собой жгутиконосцев, перемещающихся в жидкой среде с помощью биения одного или нескольких жгутиков. Многие водоросли на этой стадии обладают хроматофором, стигмой и сократительными вакуолями. Зооспоры некоторых желто-зелёных водорослей обладают многочисленными ядрами и несколькими парами жгутиков (синзооспоры).

Флороглюци́н (1,3,5-триоксибензол) — трёхатомный фенол. Представляет собой бесцветные кристаллы, сладкие на вкус. Растворим в этиловом спирте, эфире, ацетоне, трихлорметане, пиридине. В воде растворим слабо (1,13 г/100 мл при 35 °C). Образует дигидрат с температурой плавления 116—117 °C. Безводный флороглюцин плавится при 223 °C, при дальнейшем повышении температуры возгоняется с разложением.

Зигомико́та (лат. Zygomycota) — отдел грибов, объединяющий 10 порядков, 27 семейств, около 170 родов и более 1000 видов. Отличаются развитым ценоцитным мицелием непостоянной толщины, в котором септы образуются только для отделения репродуктивных органов.

Серобактерии (Тиобактерии) — весьма разнородная группа прокариотов, окисляющих восстановленные соединения серы.

Термофилы делятся на облигатных и факультативных: облигатные термофилы (также известные как крайние термофилы) постоянно требуют таких высоких температур для роста, но факультативные термофилы (умеренные термофилы) могут расти как при высоких температурах, так и при низких (ниже 50 °C). Гипертермофилы — некоторые экстремальные термофилы, для которых оптимальные температуры выше 80 °C.

Пурпурные бактерии (Purple bacteria) — разнородная группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Пурпурные бактерии относятся к классам альфа-, бета-, и гамма-протеобактерий.

Гетероцисты — дифференцированные клетки нитчатых цианобактерий, осуществляющие азотфиксацию. При недостатке соединений азота в среде они появляются регулярно вдоль трихомы из вегетативных клеток и акинет. Цианобактерии — фототрофы, осуществляющие оксигенный фотосинтез, однако кислород, атмосферный и выделяемый при фотосинтезе, ингибирует фермент нитрогеназу, необходимую для азотфиксации, поэтому у нитчатых цианобактерий в процессе эволюции возникли специализированные клетки для азотфиксации.


Азотфиксирующие бактерии – это бактерии, обладающие способностью к биологической азотфиксации, то есть связыванию азота атмосферы и переводу его в азотосодержащие соединения [4] [2] .

Азотфиксирующие бактерии - Азотофиксирующие бактерии Rhizobium на корне люцерны

Азотофиксирующие бактерии Rhizobium на корне люцерны

Азотфиксирующие бактерии - Азотофиксирующие бактерии Rhizobium на корне люцерны

Зеленые растения не способны питаться азотом, поглощая его в чистом виде из атмосферного воздуха или почвы. Денитрифицирующие бактерии выделяют азот из органических соединений и переводят его в чистый азот атмосферы. Тем самым они делают его недоступным для растений. В противовес им азотфиксирующие микроорганизмы, в основном бактерии, связывают атмосферный воздух в органических соединениях и делают его доступным для растений. Таким образом, поддерживается баланс азота в природе [4] .

К азотфиксирующим бактериям относятся: клубеньковые бактерии, некоторые актиномицеты, цианобактерии. Азотофиксаторы установлены во многих родах бактерий: Bradyrhizobium, Pseudomonas. Имеются данные о способности бактерий одних и тех же видов, в зависимости от условий развития, осуществлять два диаметрально противоположных процесса – азотфиксацию и денитрификацию [3] .


Клубень азотфиксирующих актиномицетов
рода Frankia alni, прикрепленный к корням ольхи.


Клубеньковые бактерии

Клубеньковые бактерии – одна из самых изученных групп азотофиксирующих бактерий. В настоящее время их относят к роду Rhizobium, а видовые названия обычно соответствуют названию того растения, из клубеньков на корнях которого, выделены бактерии. В частности, Rhizobium trifolii – растение-хозяин клевер, Rhizobium phaseoli – растение-хозяин фасоль, Rhizobium leguminosarum – растение-хозяин горох. Это объясняется видоспецифичностью клубеньковых бактерий [3] .

Существование клубеньковых бактерий является примером мутуалистических (взаимовыгодных) симбиотических взаимоотношений, относящихся к типу эндосимбиозов, при котором клетки микроорганизмов находятся в клетках и тканях макроорганизма [3] .

Клубеньковые бактерии – грамотрицательные подвижные палочки в свободном состоянии и в молодых клубеньках. При дальнейшем развитии они приобретают неправильную форму и превращаются в разветвленные, булавовидные или сферические бактероиды. На этой стадии происходит фиксация молекулярного азота [3] .

Клубеньковые бактерии являются микроаэрофильными микроорганизмами, способными развиваться при низком парционном давлении кислорода в среде. Они хемотрофы, гетеротрофы (хемогетеротрофы), часто нуждаются в факторах роста (витаминах): тиамине, пантотеновой кислоте, биотине. Оптимальная температура роста – +24°C–+26 °C [3] .

Обычно клубеньковые бактерии существуют в почве свободно, их количеств зависит от типа и характера почвы, предшествующей сельскохозяйственной обработки. Характерно, что в свободном состоянии, то есть, находясь в почве, данная группа бактерий не способна фиксировать азот из атмосферы, а использует связанный азот [3] .

Симбиотическая связь растения и клубеньковых бактерий устанавливается в фазе прорастания семян. При их развитии корни выделяют органические питательные вещества, стимулирующие размножение ризосферных микроорганизмов, в том числе клубеньковых бактерий. Их почвы клубеньковые бактерии проникают в корень через корневые волоски [3] .

В корневой волосок проникает сразу несколько бактерий. Процесс проникновения сопровождается инвагинацией мембраны корневого волоска. Это приводит к образованию трубки (инфекционной нити), выстланной целлюлозой, вырабатываемой клетками растения-хозяина. В ней располагаются интенсивно размножающиеся бактерии. Инфекционная нить проникает в кору корня, проходит через ее клетки. Клубенек развивается при достижении инфекционной нитью тетраплоидной клетки ткани коры. Одновременно наблюдается полиферация тетраплоидной клетки и соседних диплоидных клеток коры. Индуцирует пролиферацию индолилуксусная кислота – растительный гормон, синтезируемый клубеньковыми бактериями.В конце периода роста растения-хозяина часто наблюдается полное исчезновение бактерий из клубеньков в связи с их отмиранием. Вещества отмерших клеток поглощает растение-хозяин [3] .

Для обогощения почвы клубеньковыми бактериями в промышленных масштабах производятся специализированные препараты, содержащие клубеньковые бактерии. Они используются для предпосевной обработки семян бобовых [3] .

Многообразие азотфиксирующих бактерий

Кроме клубеньковых бактерий способностью к азотофиксации обладают многие другие микроорганизмы:

  1. Бактерий рода Bradyrhizobium – вступают в эндосибиотические мутуалистические взаимоотношения с бобовыми растениями тропического и иногда умеренного пояса. Все штаммыбактерий данного рода обнаруживают сроство к определенному кругу хозяев. В частности, вторая по экономической значимости сельскохозяйственная культура в США соя – формирует симбиоз с бактериямивидаBradyrhizobium japonicum. Также как и клубеньковые бактерии, Bradyrhizobium образуют клубеньки, в которых клетки бактерий имеют неправильную раздутую форму (бактероиды) и продуцируют нитрогеназу – фермент, способствующий фиксации азота[3] .
  2. Актномицеты рода Frankia. Хозяевами актиномицетов-симбиотов выступают более 200 видов двухдольных древесных растений, принадлежащих к восьми семействам, в числе которых ольха, облепиха, стланик, казуарина. На корнях растений в результате симбиоза с актиномицетами образуются клубеньки, достигающие в диаметре 5 см. Актиномицеты проникают в корни через корневые волоски и образуют клубеньки. В них также как и у бобовых образуется леггемоглобин, защищающий нитрогеназу от избытка молекулярного кислорода. Химизм фиксации азота актиномицетами аналогичен подобному процессу у клубеньковых бактерий, но более экономичен с точки зрения расхода АТФ. Кроме того, актиномицеты рода Frankia способны к азотфиксации в свободноживущем состоянии, без контакта с растением [3] .
  3. Бактерий родов Chromatium и Klebsiella вступают в эндосимбиоз с тропическими растениями Peretta и Psichoteria, образуя на их листьях клубеньки в которых осуществляется фиксация азота[3] .
  4. Цианобактерии – это многоклеточные организмы, отдельные клетки которых, в условиях отсутствия связанного азота, преобразуются в специализированные формы – гетероцисты. В них происходит фиксация атмосферного азота. В гетероцистах нитрогеназа защищена от ингибирующего действия молекулярного кислорода дополнительными поверхностными оболочками. Цианобактерии способны образовывать симбиозы с широким кругом растений, включая покрытосеменные, голосеменные, папоротники, мхи и даже одноклеточные морские диатомовые водоросли. Наиболее изучен эндосимбиоз цианобактерий Anabaena azollae с водным папоротником Azolla, у которого цианобактерии содержаться в полостях листьев, растущих на поверхности стоячих вод [3] .

Бактерии рода Pseudomonas, обитающие в ризосфере различных растений, способны фиксировать молекулярный азот. Азотфиксирующие свойства выявлены у штаммов P. saccharophila, P. dеlafieldii, P. aurantiaca и др.


Симбиоз – это взаимоотношение двух различных видов существ (симбионтов), приносящие пользу обоим видам или хотя бы одному из них [2] .

При симбиотических взаимоотношениях организмы стимулируют и поддерживают развитие друг друга. Совместно все члены симбиотической ассоциации (или их часть) развиваются гораздо продуктивнее, чем в отдельности. Между ними закрепляется соответствующее разделение функций, при котором становится неизбежным обмен продуктами жизнедеятельности [3] . Симбиотические взаимоотношения формируют возможность выигрышного положения в борьбе за существование у одного или всех его членов. Основа для возникновения симбиозов – наличие различных типов связей: трофических, пространственных, защитных [2] .

Симбиоз - Мутуалистичекий симбиоз бактерий с макрорганизмами

Мутуалистичекий симбиоз бактерий с макрорганизмами

Симбиоз - Мутуалистичекий симбиоз бактерий с макрорганизмами

Ризобиевые бактерии (род Rhizobium) с люцерной [5]

Симбиотические отношения между микробами

Симбиоз является более редкой формой взаимоотношений в мире микробов, чем конкуренция. При наличии наибольшей степени связей формируется консорциум – структурированная симбиотическая ассоциация двух или более видов, предполагающая тесную интеграцию их метаболизма [2] .

Основные признаки симбиоза между микробами

Границы между различными типами симбиозов микробов в природе часто трудно различимы. Различные формы симбиотических отношений могут переходить друг в друга [2] .

Симбиозы классифицируют по нескольким признакам:

1. По обязательности симбиотической связи выделяют:

  • факультативный симбиоз – каждый организм может существовать самостоятельно;
  • облигатный симбиоз – один или оба симбионта сильно зависимы друг от друга, и развиваться раздельно не могут [2] .

2. По расположению партнеров различаются:

  • экзосимбиоты – микроорганизмы существуют раздельно друг от друга;
  • эндосимбиоты – один из микробов развивается в клетке другого [2] .

Типы симбиоза по характеру взаимоотношений между микробами

Характер образующихся между микроорганизмами взаимоотношений позволяет выделять несколько основных типов симбиозов:

  1. Собственно симбиоз – тип взаимоотношений между микробами, при котором два или более вида при совместном развитии создают друг для друга взаимовыгодные условия жизнедеятельности [2] .
  2. Метабиоз – тип взаимоотношений, когда пользу извлекает только один партнер, не причиняя вреда другому. Чаще всего наблюдается развитие одного организма за счет продуктов метаболизма другого [2] .
  3. Сателлитизм – разновидность метабиоза. В данном случае развитие одного микроба стимулируется другим в результате выделения фактора роста (витаминов, аминокислот, азотистых веществ) [2] .
  4. Синергизм – тип взаимоотношений между членами ассоциации, при которых они стимулируют развитие друг друга за счет выделения продуктов жизнедеятельности [2] .

Симбиоз - Паразитический симбиоз

Паразитический симбиоз

Симбиоз - Паразитический симбиоз

Взаимоотношения микробов с макроорганизмами

Характер взаимоотношений микробов с макроорганизмами определяется путем формирования биотических связей. При этом один многоклеточный организм вступает в связь одновременно с несколькими микроорганизмами одновременно [2] .

В данном случае симбиоз – это тесное сожительство микроорганизмов с животными или растениями [1] .

Особенности симбиоза микробов с макроорганизмами

При длительном сосуществовании между симбионтами происходит процесс их совместной коэволюции. Это влечет за собой увеличение генетической пластичности популяции, переносу генов. На примере энтеробактерий доказано, что в симбиотических популяциях бактериальные клетки более разнообразны, чем в свободноживущих. Так же установлено, что хозяин обычно оказывает более сильное влияние на структуру популяций бактерии, чем условия внешней среды [1] [2] .

Иногда при симбиозе микробные клетки дифференцируются на две формы:

  • участвующие в образовании симбиоза;
  • ответственные за размножение популяции [2] .

Одновременно в симбиозах у микроорганизмов наблюдается появление свойств и признаков не нужных для них самих, но приводящих к повышению жизнеспособности хозяина [2] .

В силу совместной коэволюции микробы – облигатные симбионты не могут развиваться вне организма хозяина [2] .

Кроме того, между макро и микроорганизмами, живущими в симбиотической связи, формируется общий поток энергии, совместная регуляция экспрессии генов, наличие взаимной передачи физиологической, клеточной, организменной информации через регуляторные системы организмов [2] .

Типы симбиозов микробов с макроорганизмами

По относительной пользе, извлекаемой партнерами из ассоциативных взаимоотношений между микро- и макроорганизмами выделяют несколько типов симбиоза:

  • мутуалистичекий симбиоз (мутуализм) – оба партнера извлекают пользу от взаимосуществования, при этом они не могут существовать раздельно;
  • паразитизм (паразитический симбиоз) – один из партнеров испытывает вредоносное влияние другого;
  • комменсализм – микробы питаются за счет хозяина, но сами не оказывают на него, ни какого влияния [1] .

В зависимости от пространственного расположения микробов по отношению к макроорганизму (хозяину) различают:

  • экзосимбиоз – микроорганизм находится вне клеток макроорганизма;
  • эндосимбиоз – микроорганизм находится внутри клеток и тканей макроорганизма [2] .

Очень часто точный вид симбиоза определить достаточно трудно, поскольку наблюдаются переходные формы взаимоотношений. Особенно трудно определяется разница между мутуалистическими и паразитическими взаимоотношениями. Степень пользы или вреда, получаемого каждым из партнеров, оценивается исходя из сравнения их состояния при независимом существовании с их состоянием при жизни в ассоциации [2] .

Одновременно отмечается, что природа взаимоотношений изменяется при смене условий окружающей среды. Взаимоотношения начинавшиеся, как взаимовыгодные становятся паразитическими и наоборот [2] .

Азотфиксирующие бактерии

Азотфиксирующие бактерии – это бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. , обладающие способностью к биологической азотфиксации, то есть связыванию азота атмосферы и переводу его в азотосодержащие соединения.

Зеленые растения не способны питаться азотом, поглощая его в чистом виде из атмосферного воздуха или почвы. Денитрифицирующие бактерии выделяют азот из органических соединений и переводят его в чистый азот атмосферы. Тем самым они делают его недоступным для растений. В противовес им азотфиксирующие микроорганизмы, в основном бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. , связывают атмосферный воздух в органических соединениях и делают его доступным для растений. Таким образом, поддерживается баланс азота в природе.

Колонии азотфиксирующих бактерий

Колонии азотфиксирующих бактерий

К азотфиксирующим бактериям относятся: клубеньковые бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. , некоторые актиномицеты, цианобактерии. Азотофиксаторы установлены во многих родах бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. : Bradyrhizobium, Pseudomonas. Имеются данные о способности бактерий одних и тех же видов, в зависимости от условий развития, осуществлять два диаметрально противоположных процесса – азотфиксацию и денитрификацию.

Клубеньковые бактерии

Клубеньковые бактерии – одна из самых изученных групп азотофиксирующих бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . В настоящее время их относят к роду Rhizobium, а видовые названия обычно соответствуют названию того растения, из клубеньков на корнях которого, выделены бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . В частности, Rhizobium trifolii – растение-хозяин клевер, Rhizobium phaseoli – растение-хозяин фасоль, Rhizobium leguminosarum – растение-хозяин горох. Это объясняется видоспецифичностью клубеньковых бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. .

Симбиоз бактерий и корней растения

Симбиоз азотфиксирующих бактерий и корневой системы растения

Существование клубеньковых бактерий является примером мутуалистических (взаимовыгодных) симбиотических взаимоотношений, относящихся к типу эндосимбиозов, при котором клетки микроорганизмов находятся в клетках и тканях макроорганизма.

Клубеньковые бактерии – грамотрицательные Грамотрицательные бактерии – это бактерии которые не окрашиваются кристаллич. подвижные палочки в свободном состоянии и в молодых клубеньках. При дальнейшем развитии они приобретают неправильную форму и превращаются в разветвленные, булавовидные или сферические бактероиды. На этой стадии происходит фиксация молекулярного азота.

Клубеньковые бактерии являются микроаэрофильными микроорганизмами, способными развиваться при низком парционном давлении кислорода в среде. Они хемотрофы, гетеротрофы (хемогетеротрофы), часто нуждаются в факторах роста (витаминах): тиамине, пантотеновой кислоте, биотине. Оптимальная температура роста – +24°C–+26 °C.

Обычно клубеньковые бактерии существуют в почве свободно, их количеств зависит от типа и характера почвы, предшествующей сельскохозяйственной обработки. Характерно, что в свободном состоянии, то есть, находясь в почве, данная группа бактерий не способна фиксировать азот из атмосферы, а использует связанный азот.

Симбиотическая связь растения и клубеньковых бактерий устанавливается в фазе прорастания семян. При их развитии корни выделяют органические питательные вещества, стимулирующие размножение ризосферных микроорганизмов, в том числе клубеньковых бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . Их почвы клубеньковые бактерии проникают в корень через корневые волоски.

В корневой волосок проникает сразу несколько бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . Процесс проникновения сопровождается инвагинацией мембраны корневого волоска. Это приводит к образованию трубки (инфекционной нити), выстланной целлюлозой, вырабатываемой клетками растения-хозяина. В ней располагаются интенсивно размножающиеся бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . Инфекционная нить проникает в кору корня, проходит через ее клетки. Клубенек развивается при достижении инфекционной нитью тетраплоидной клетки ткани коры. Одновременно наблюдается полиферация тетраплоидной клетки и соседних диплоидных клеток коры. Индуцирует пролиферацию индолилуксусная кислота – растительный гормон, синтезируемый клубеньковыми бактериями Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. .В конце периода роста растения-хозяина часто наблюдается полное исчезновение бактерий из клубеньков в связи с их отмиранием. Вещества отмерших клеток поглощает растение-хозяин.

Для обогощения почвы клубеньковыми бактериями в промышленных масштабах производятся специализированные препараты, содержащие клубеньковые бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. . Они используются для предпосевной обработки семян бобовых.

Разновидности азотфиксирующих бактерий

Кроме клубеньковых бактерий способностью к азотофиксации обладают многие другие микроорганизмы:

  1. Бактерии рода Bradyrhizobium – вступают в эндосибиотические мутуалистические взаимоотношения с бобовыми растениями тропического и иногда умеренного пояса. Все штаммы бактерий данного рода обнаруживают сроство к определенному кругу хозяев. В частности, вторая по экономической значимости сельскохозяйственная культура в США соя – формирует симбиоз с бактериями вида Bradyrhizobium japonicum. Также как и клубеньковые бактерии Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. , Bradyrhizobium образуют клубеньки, в которых клетки бактерий имеют неправильную раздутую форму (бактероиды) и продуцируют нитрогеназу – фермент, способствующий фиксации азота.
  2. Актномицеты рода Frankia. Хозяевами актиномицетов-симбиотов выступают более 200 видов двухдольных древесных растений, принадлежащих к восьми семействам, в числе которых ольха, облепиха, стланик, казуарина. На корнях растений в результате симбиоза с актиномицетами образуются клубеньки, достигающие в диаметре 5 см. Актиномицеты проникают в корни через корневые волоски и образуют клубеньки. В них также как и у бобовых образуется леггемоглобин, защищающий нитрогеназу от избытка молекулярного кислорода. Химизм фиксации азота актиномицетами аналогичен подобному процессу у клубеньковых бактерий Бактерии объединены в царство Eubacteria или Bacteria. Царство делят на несколько типов: Гр. , но более экономичен с точки зрения расхода АТФ. Кроме того, актиномицеты рода Frankia способны к азотфиксации в свободноживущем состоянии, без контакта с растением.
  3. Бактерий родов Chromatiumи Klebsiellaвступают в эндосимбиоз с тропическими растениями Peretta и Psichoteria, образуя на их листьях клубеньки в которых осуществляется фиксация азота.
  4. Цианобактерии – это многоклеточные организмы, отдельные клетки которых, в условиях отсутствия связанного азота, преобразуются в специализированные формы – гетероцисты. В них происходит фиксация атмосферного азота. В гетероцистах нитрогеназа защищена от ингибирующего действия молекулярного кислорода дополнительными поверхностными оболочками. Цианобактерии способны образовывать симбиозы с широким кругом растений, включая покрытосеменные, голосеменные, папоротники, мхи и даже одноклеточные морские диатомовые водоросли. Наиболее изучен эндосимбиоз цианобактерий Anabaena azollae с водным папоротником Azolla, у которого цианобактерии содержаться в полостях листьев, растущих на поверхности стоячих вод.

Бактерии рода Pseudomonas, обитающие в ризосфере различных растений, способны фиксировать молекулярный азот. Азотфиксирующие свойства выявлены у штаммов P. saccharophila, P. dеlafieldii, P. aurantiaca и др.

Читайте также: