Что такое генетически модифицированные вирусы

Обновлено: 01.05.2024

— Что же такое эти страшные и ужасные ГМО?

— Генно-модифицированный организм — это скорее юридический термин, нежели что-то осмысленное с точки зрения биологии. Биология подразумевает, что мы все — мутанты, все мы подвергаемся генной модификации в процессе размножения. Дело в том, что в каждом поколении у животных и растений возникают мутации. Это генетические изменения, которые могут приводить впоследствии к тем или иным отличиям организма.

Так вот, генная инженерия позволяет нам вносить точечные генетические особенности в будущий организм в лаборатории. Такой организм и будет с юридической точки зрения называться генно-модифицированным.

До этого тысячи лет человек выводил новые породы и сорта растений и животных, искусственно влияя на формирование генома — это называется селекцией. Если проводить аналогию, то методы селекции можно сравнить с кувалдой, которой мы грубо били по геному и смотрели, что получится. Теперь у нас есть своеобразные маникюрные ножницы, благодаря которым мы можем внести изменения аккуратнее — технологии генной инженерии.

В конечном итоге важнее не то, каким образом мы редактируем ДНК, а то, какая конкретная мутация произошла в организме. Допустим, мы получили папайю, устойчивую к вирусам. Или бактерию, производящую инсулин. Или картошку, устойчивую к вредителям. Это все разные организмы с разными мутациями.

Но и в рамках селекции мы тоже получаем организмы с определенными особенностями. Просто это происходит дольше, и вместе с желаемым признаком развиваются сопутствующие. Генная инженерия — метод более точный и аккуратный.

— С чего началась индустрия ГМО?

— Изменения в геном бактерий ученые вносят уже несколько десятилетий. И в геном растений — тоже. Первыми ГМО, нацеленными на то, чтобы использовать их в пищевой промышленности, были помидоры, из которых изготавливали томатную пасту, это было в начале 1990-х годов. И что любопытно, эти самые томаты с гордостью маркировали как ГМО, как продукт высокой технологии. Изначально это так и воспринималось людьми: генная инженерия — это что-то современное и крутое.

— А потом что-то пошло не так.

— А потом началась информационная кампания против этого как против чего-то противоестественного, неприродного, страшного. Появились некорректные ассоциации между ГМО и какими-нибудь ядами, химикатами, которые якобы добавляют в пищу. Я как-то был на одной телепередаче, там был противник ГМО, эксперт, который думал, что ГМО — это пестициды. То есть люди часто просто не понимают, что такое ГМО. А это просто живые организмы, они размножаются, просто у них есть определенные генетические особенности, целенаправленно внесенные в лаборатории.


Фото vesti.ua

Люди часто просто не понимают, что такое ГМО. А это просто живые организмы, они размножаются, просто у них есть определенные генетические особенности, целенаправленно внесенные в лаборатории

— Чтобы получить определенную желаемую мутацию, в ген исходного организма встраивается геном другого организма?

Как вы можете из одних и тех же букв составлять разные слова и предложения, так и генетическая последовательность любого организма составлена из одних и тех же нуклеотидов.

Если проводить аналогии — например, если бы вы взяли цитату из Пушкина и вставили ее в книгу Толстого — у вас получится генно-модифицированный, в данном случае — трансгенный текст. А могли бы просто одну букву у Толстого поменять, это была бы точечная мутация.

— В природе такое встречается? Или трансгенные организмы могут появиться только в лаборатории?

Большинство генов передаются вертикально — от родителей к детям. Но случаются в эволюции отдельные события, когда гены переносятся горизонтально — от одного организма к другому. Такие примеры чаще встречаются у бактерий, но их можно найти и у растений, и у животных.

— Может быть, поэтому и столько страшилок вокруг ГМО? Ведь если какой-то вирус умеет встроить в человеческий геном свой ген, то почему бы этого не сделать новым ГМО?

— Мы поедаем гены живых организмов постоянно. Мы съели картошку — и вместе с ней полную ее последовательность генов. Но от этого у нас ботва не выросла, ничего на голове не заколосилось. Для нашей пищеварительной системы совершенно все равно, какую последовательность буковок ей переваривать, обращается она с ними одинаково.

Те примеры горизонтального переноса, которые мы знаем, работают по-другому, они не так тривиально устроены: не так, чтобы съел — и генно-модифицировался.

Для нашей пищеварительной системы совершенно все равно, какую последовательность буковок ей переваривать, обращается она с ними одинаково

— Генная инженерия сейчас — один из двигателей прогресса в медицине?

— Сейчас все обсуждают первую вакцину от коронавируса. Она представляет собой генно-модифицированный вирус, созданный генными инженерами. Оболочку взяли от одного вируса, в нее поместили генетический материал от SARS Cov2 — вот вам и пример применения генной инженерии. Понятно, что эту вакцину еще нужно изучать и проверять на безопасность, потому что ее будут, предположительно, вводить большому количеству людей. Но подобных вакцин очень много.

С помощью генной инженерии производятся генно-терапевтические препараты, которые могут бороться с врожденными заболеваниями. Например, таким образом — на основе ГМ-вирусов — создали лекарство от одного из типов гемофилии.

Практически весь инсулин производится на основе генетически модифицированных микроорганизмов — если бы не генная инженерия, людям с диабетом было бы жить гораздо тяжелее, чем сейчас.

— А в сельском хозяйстве в какую сторону в основном двигается генная инженерия?

— Наверное, самое важное, что удалось с ее помощью сделать в агрокультуре — вызвать устойчивость к вредителям и вирусам. Например, без использования ГМО на Гавайях сейчас бы там вымерла папайя. Или, например, был под угрозой вымирания один из самых популярных сортов банана — его уничтожала грибковая инфекция. И тогда ученые внесли в геном банана генетическое изменение — теперь есть сорт, который этой болезни не боится. Есть ГМО-сорта, устойчивые к вредителям, и это помогает не поливать поля огромным количеством инсектицидов, а значит, благотворно отражается на состоянии окружающей среды.

Я читал забавный пример из жизни амишей (религиозное движение, которое в числе прочих запретов полностью отказывается от всевозможных современных технологий, — прим. ред.). Они свои растения на полях выращивают вручную. Проблема вредителей для них одна из самых актуальных — они не могут опрыскивать свои посевы, потому что для этого нужны механические средства. Так вот, некоторые амиши используют генно-модифицированный посадочный материал — семена сортов, не боящихся вредителей. И это вроде как не противоречит их религии. Они отказываются от электричества и металлических машин, их религия запрещает то, что мы бы ассоциировали с механикой. А вот ГМО — пожалуйста.

Наверное, самое важное, что удалось с ее помощью сделать в агрокультуре — вызвать устойчивость к вредителям и вирусам

— Есть слух о том, что коронавирус — это тоже ГМО.

Для меня это разговор того же порядка, что Земле на самом деле 6 тысяч лет, просто Бог закопал в нее кости динозавров, чтобы мы думали, что ему миллиарды или сотни миллионов лет. Нет ничего, что мешало бы естественному появлению этого вируса, как и нет никаких признаков того, что кто-то вмешивался в эту эволюцию искусственно.

— Среди противников ГМО бытует еще и такой аргумент, что такие растения будут вытеснять натуральные на полях, и все естественное вымрет, а ГМО захватят Землю.

— Сложно себе представить, чтобы любой культивируемый сорт оказался жизнеспособным без ухода. Вся селекция этих организмов была направлена на то, чтобы поставить их выживание в полную зависимость от человека. Они нуждаются в том, чтоб мы их поливали, удобряли и т.д. Это не дикорастущие организмы. Такие растения не смогут выйти за пределы возделываемых полей, они не выживут без нас. Кроме того, те генные модификации, которые мы вносим, в большинстве не были бы полезны в дикой среде. Например, никакого толка в дикой природе нет от улучшения вкусовых качеств картошки или яблока.

Есть более разумная тема для обсуждения — то, что называется проблемой монокультур. Допустим, у вас есть очень хороший сорт, который дает прекрасную урожайность и производительность. Вы заменяете им все остальные сорта этой культуры (повторюсь, я говорю не о дикорастущих видах, а о культурных растениях), и получается, что все покупают одни и те же семена одной и той же культуры от одного и того же производителя. Это приводит к низкому генетическому разнообразию.

Проблему монокультур можно решать заранее — и инструментом этого решения тоже может стать генная инженерия

— Есть ли свидетельства опасности или вреда ГМО?

— За всю историю человечества еще не было случаев, когда человек пострадал бы, съев продукт из ГМО.

Единственная история, где генная инженерия была в какой-то степени неблагоприятна для людей, была на самой заре создания генных терапий, когда генно-модифицированные вирусы используются для лечения наследственных заболеваний. Сейчас это очень перспективные технологии с большим количеством положительных результатов. А на первых порах бывали и нежелательные побочные эффекты. Поэтому, как только эта технология появилась, были определенные опасения насчет нее и насчет этих исследований. Но ученые уже научились все это делать безопасно. И конечно, есть разница между тем, что вы что-то едите — и между ситуацией, когда вам вирус вводят в кровь. Во втором случае потенциальный риск гораздо больше.

— А как с тем, что была научная статья об увеличении числа онкологических заболеваний у крыс, которые питались ГМО?

Одну из самых известных таких статей написал француз Жиль-Эрик Сералини. Его работа была подвергнута критике за методологию исследования, и ее в итоге вообще отозвали из научного журнала. Проблема там была в статистическом анализе. Если его провести, оказывается, что никакой разницы между животными, которые употребляли и не употребляли ГМО, нет. Все оказывается в пределах случайной погрешности.

На статью Сералини ссылались все борцы с ГМО, потому что там были еще и фотографии крыс со страшными раковыми опухолями. Но часто умалчивают важную деталь: в своих опытах Сералини использовал специально выведенную линию крыс для онкологических исследований. У таких животных к полутора годам в 45% случаев и безо всякого ГМО развивались раковые опухоли! И, кстати, такие же крысы без ГМО, но с раком, присутствовали в этой работе — но уже без фотографий. Таким образом акцентировали внимание людей: вот, дескать, смотрите, мышка ГМО ела, и вот у нее страшный рак. Но ГМО тут совершенно ни при чем.

Подобные страшилки и создали образ вредных ГМО.

— Понятно, что сейчас идет истерия. Как она связана с маркетингом?

Это просто вот такой маркетинговый прием: приходит человек, который обеспокоен этими страшилками, и у него есть лишние деньги в кошельке, и он готов платить больше за продукт без ГМО

— Я соль видела без ГМО.

А как можно информационному изданию словить хайпа лучше, кроме как рассказать о какой-то страшной угрозе этому миру? Верит ведь кто-то и в то, что вышки 5G вызывают COVID-19. Точно так же и с ГМО: так устроено групповое мышление. То, что много раз повторено большим количеством людей, воспринимается многими за правду.

— А у нас есть и те, кто на государственном уровне в это верит. У нас же действует закон, запрещающий распространять ГМО?

— Запрет — на выпуск в окружающую среду.

— То есть в лаборатории можно работать?

— Можно работать в лаборатории. А потом, за невозможностью применить на практике ваши прикладные результаты, вы их патентуете, продаете западным компаниям, которые потом это реализуют, а мы — импортируем. По крайней мере я не вижу другого сценария, как это можно сделать.

— Получается, сейчас в России генетически модифицированных организмов не выращивают вообще?

— В каких-то промышленных коммерческих количествах — нет, в каких-то частных теплицах научно-исследовательских институтов — да. В России есть специалисты, которые умеют создавать ГМО, причем это очень интересные штуки. Хорошо, что этот запрет не коснулся медицины — хотя выглядит это парадоксально.

Как я уже сказал, некоторые вакцины — это же продукт генной инженерии! То есть с точки зрения наших политиков, вколоть в кровь ГМО — не страшно, а съесть — страшно. Хотя я рад, что хотя бы так. Остаться без важного раздела медицины сейчас было бы страшнее. Но тем не менее этот парадокс забавен.

— Что мы можем купить в магазине в России, что может оказаться генно-модифицированным?

Нет в мире молока с ГМО. Нет мяса с ГМО (если только это не колбаса, в которую ГМ-сою добавили).

— Как вы думаете, есть вероятность того, что генетические модификации человека в лаборатории когда-нибудь одобрят?

— Я думаю, это наступит довольно скоро, и в ближайшие десять лет это станет нормальной практикой. Когда-то ведь были дискуссии и сомнения по поводу экстракорпорального оплодотворения и пренатальной диагностики. Это казалось многим чем-то вообще немыслимым, а сейчас это стандартная практика. То же самое в какой-то момент, думаю, станет возможным и с генной инженерией.

Есть люди, которые родились с заболеванием генетическим, есть — которые без него. Справедливо ли это? Вопрос философский. Но очевидно, хорошо бы, если люди с генетическими проблемами могли бы посредством направленной мутации уравняться со здоровыми людьми

Но тут пока есть техническая проблема: инструменты для генной модификации, с одной стороны, очень хорошо работают, когда мы проверяем, что получилось, а потом из полученных образцов отбираем тот, который нас больше устраивает. Но в случае если мы модифицируем человека, нам надо быть уверенными в том, что не вносим никаких дополнительных мутаций, что мы все сделали хорошо с первого раза. И современные методы генной инженерии к этому очень близки, но не до конца. Еще чуть-чуть!

Как только технологию отладят до совершенства, сделают ее несомненной, тогда, думаю, отпадет и вопрос этики. Ведь почему есть этический вопрос для ученого? Представьте себе, если мы сделаем генно-модифицированного ребенка, и у него будет какое-то заболевание — насколько, во-первых, это будет ужасно для этой семьи и этого ребенка, а во-вторых — насколько это ужасно будет для всего человечества, как сильно это откинет назад доверие к этой технологии. Поэтому ученые очень осторожно выступают за тщательную регуляцию этого процесса.

С растениями и животными проще: если что-то пошло не так, то мы переделаем. А человека вы не переделаете.

— Во-первых, надо понимать, что генная инженерия — это не инструмент для создания сверхлюдей. Единственное, что мы можем сделать — посмотреть, есть ли мутация, которая присутствует в человеческой популяции, оценить ее (полезная она или вредная) и воспроизвести полезную мутацию в организме, у которого ее нет, или убрать вредную. Есть люди, которые родились с заболеванием генетическим, есть — которые без него. Справедливо ли это? Вопрос философский. Но очевидно, хорошо бы, если люди с генетическими проблемами могли бы посредством направленной мутации уравняться со здоровыми людьми.

— Что нужно сделать, чтобы в России 75% населения верили не во вредность генной инженерии, а в ее пользу?

— Мне кажется, что тема генной инженерии — это одна из тех тем, где большинство людей противники именно из-за незнания простейших биологических вещей. Вроде того, что мутации возникают абсолютно в каждом поколении, и мы все мутанты. Мне кажется, надо это все транслировать, рассказывать, разъяснять максимально широко.

Я бы, конечно, хотел увидеть и изменения в курсе биологии, чтобы школьникам рассказывали о достижениях современной биотехнологии, развеивали актуальные мифы. Это, может быть, утопично с учетом российских реалий. Но то, что мы, научные журналисты и популяризаторы науки, можем сделать — это развеивать заблуждения и хотя бы надеяться на то, что постепенно хорошие идеи вытеснят плохие.

Disclaimer: автор статьи не имеет отношения к биологии — не является ни биологом, ни биохимиком, ни генетиком и не обладает хоть сколько-то родственной профессией. Эта статья — всего лишь попытка разобраться с ворохом информации и реальности об одной из угроз современного мира. Так что если вы ближе к биологии и генетике, заранее предупреждаю, вы можете пострадать при чтении статьи, например, лопнуть от смеха. Фактически данная статья является компиляцией статей по теме ГМО (ссылки приведены в тексте).

Что такое ген и генотип

Традиционная селекция

  • Отбор. Самый древний и самый простой метод селекции. Сеем овощи/фрукты, собираем, оставляем только те, которые нам нужны (например, с самыми крупными плодами), опять сеем, опять растим и отбираем и так далее. Так выведена, например, антоновка. Он же очевидно и самый медленный метод селекции.
  • Полиплоидия. Дублирование хромосом в растении, что приводит к увеличению размеров клеток и всего растения. Цитата отсюда:

В настоящее время применяют методы искусственного получения полиплоидов, воздействуя на растения разными мутагенами (в основном колхицином), разрушающими веретено деления клетки. Таким образом из диплоидных (2n) можно получить тетраплоидные (4n) формы.

Индуцированные рентгеновыми лучами мутанты были выделены у многих злаков (ячменя, пшеницы, ржи и др.). Они отличаются не только повышенной урожайностью, но и укороченным побегом. Такие растения устойчивы к полеганию и имеют заметные преимущества при машинной уборке.

В настоящее время на базе громадного развития ядерной физики, давшей новые доступные источники излучений в виде гамма-лучей от Со60, нейтронов в ядерных реакторах и т. д., мощное влияние радиации используется в практических целях по селекции растений и микроорганизмов.Создание новых методов радиационной селекции было связано с развитием ряда научных положений в области генетики, и в первую очередь с разработкой вопроса о природе материальных основ наследственности, знание которых позволило вскрыть физическую и химическую природу воздействия радиации на наследственные структуры в клетке.

При введении в промышленное использование исходного штамма пеницилла (штамм 1951В25) его активность составляла всего лишь около 50 единиц. Продажная стоимость пенициллина в то время была громадной. За десять лет работы методами радиационной селекции, к 1960 г., были получены штаммы с активностью до 5000 единиц. При этом получены штаммы, не выделяющие золотисто-желтого пигмента, что резко облегчило химическую очистку пенициллина. В результате пенициллин стал дешевым, общедоступным лечебным средством. То же произошло со стрептомицином. Активность исходных штаммов составляла около 200 единиц, сейчас радиационные штаммы выделяют 2000 и более единиц.

Таким образом, традиционная селекция широко использует такие методы: как облучение рентгеном, облучение радиацией, использование токсических веществ. Очевидно, что при этом меняется солидная часть генокода, причем никто не контролирует, что именно изменилось в коде и какие последствия эти изменения могут вызвать.

Генетическая модификация

В общем, фактически единственное отличие традиционной селекции от генетической модификации в том, что в генной модификации мы знаем, что меняем, знаем, что хотим получить и целенаправленно. В традиционной — не знаем, просто смотрим, нужный получился или нет.

Аргументы за

Аргументы против

Добавят в помидоры гены камбалы, а человек будет это есть и у него жабры вырастут

А откуда знать, что они там изменили?

Распространение ГМО привело к тому, что даже помидоры в супермаркетах безвкусные

Надо есть только натуральную, проверенную веками пищу

При Екатерине II “земляная груша”, “тартуфель” начал внедряться в России как средство борьбы с голодом. 8 февраля 1765 года указом императрицы все губернаторы обязывались лично заботиться о разведении продукта. Но сельские власти отнеслись к делу формально и тихо саботировали. В отписках в Петербург сообщалось: “Оных яблоков ноне в появе не было”, “по Божескому изволению ни единого того яблока урожаю не оказалось”, “яблоко то мирянам не показалося”, “не только приплоду, но и что посажено в земле не оказалося”.

Распоряжение о посеве картофеля, не имевшее принудительного характера, было сделано еще в 1837-1838 годах и не вызвало в народе никаких толков. Впоследствии же, когда волнение уже вспыхнуло, народ ухватился и за него, отыскивая в нем доказательств его убеждения в продаже крестьян какому-то господину. Награды, обещанные за посевы картофеля, были непонятны крестьянам, и они старались найти в действиях начальства какой-то особенный, тайный смысл. Будучи обеспечены в хлебе, они видели в картофеле такой же не нужных для них овощ, как и всякий другой. Награды эти могли иметь значение в губерния не хлебородных, в которых картофель мог заменить собой недостаток в хлебе.

ГМО недостаточно исследованы и нет исследований, доказывающих их полную безопасность

Научные исследования подтверждают вредность ГМО

Greenpeace против ГМО

ГМО-растение может скреститься с диким и уйти в дикую природу

ГМО-семена специально делают бесплодными, чтобы фермеры были вынуждены покупать их каждый год

Правительство не стало бы запрещать ГМО, если бы оно было безвредным

В Индии наблюдается череда самоубийств фермеров из-за ГМО

Миф утверждает, что из-за большого распространения ГМО в Индии наблюдается череда самоубийств фермеров, которые их выращивали. На самом деле прямой связи между ГМО и самоубийствами индийских фермеров не обнаружено. Подробности здесь.

Монополист Монсанто травит людей

ГМО-технологии это лишь орудие в монополизации мирового сельхоз. производства американским химическим концерном Монсанто. Смысл внедрения этих биотехнологий лишь в повышении прибыли любой ценой, Монсанто плевать на безопасность потребителей и природы. Они в основном выпускают на мировой рынок семена растений, генетически модифицированных для устойчивости к ими же производимым пестицидам, чтобы продавать свою канцерогенную отраву в удесятеренных дозах. Отсюда.

ГМ соя с генами арахиса может вызывать у людей аллергию

Интересные факты

Уже упоминаемый инсулин для больных диабетом производится генетически модифицированными бактериями. Модификация позволила создать бактерий, производящих инсулин, полностью аналогичный человеческому, который легче усваивается в отличие от свиного инсулина (отличается от человеческого на одну аминокислоту) и от инсулина от крупного рогатого скота (отличается от человеческого на три аминокислоты).

Слово Капитану Очевидность: полный запрет ГМО приведет к серьезному падению качества инсулина для больных диабетом.

И извинение всем читающим. Картинка для привлечения внимания в начале поста не имеет никакого отношения к ГМО. Более того, лягушка с лишними ногами вообще не продукт человеческой деятельности.

Всему виной всего лишь небольшой червяк-паразит. Именно он, попадая в лягушку, заставляет ее отращивать лишние ноги. Цель — попасть в желудок к определенным птичным, где данный паразит дальше комфортно живет. Модифицированная лягушка не только похожа на кузнечика (привлекательнее для птиц), но и менее подвижна, что делает ее легкой добычей.
Вот еще любопытный пример паразита:

Гриб-паразит муравьев, который умеет захватывать контроль над центральной нервной системой муравья и полностью подчинять его себе. Цель все та же — получить оптимальные условия для своей жизни и возможности оставить потомство.
Эти факты приведены для демонстрации, что сама природа чрезвычайно разнообразна и наши пока довольно нелепые, маленькие, осторожные попытки редактирования генома — мелочь по сравнению с тем, что природа уже может показать. Если примитивный гриб может контролировать нервную систему более сложного организма, а примитивный паразит — заставлять лягушку менять свою морфологию, то почему человеку не следует применять то, что уже давным-давно умеют делать даже простые атомные частицы?

Вместо заключения



Интересно, чем закончатся наши исследования

Кажется, прошлая тема про ГМО-лосося весьма неплохо зашла Хабрачитателям. Пока мы готовим материал по модификации растений, я предлагаю посмотреть не менее интересную тему — генная модификация Homo Sapiens. Это очень спорная и холиварная тема, игнорировать которую бесполезно.

Сразу дам несколько тезисов, которые могут показаться спорными, но которые так или иначе надо решать в научном сообществе:

  1. Мы вырождаемся. Каждый год выживают все более слабые особи, которые рожают детей и отягощают генофонд. Это надо чинить.
  2. Простые запреты не помогут. Если эксперименты запретят в Европе, то их выполнит, например, Китай.
  3. На лечении генетических заболеваний мы не остановимся. Рано или поздно подключатся военные со своими суперсолдатами и те, кто хочет более сильных и умных детей с голубыми глазами.

Что такое генотерапия

Давайте для начала определимся с терминологией. Генотерапия — это вмешательство в геном человека с целью лечения тех или иных заболеваний. Причем, вмешательство идет только в соматические клетки. Это те клетки, которые не участвуют в размножении. Нам явно не надо какие-то мутации и багфиксы закреплять в новых поколениях. Пока, по крайней мере.

Реальные эксперименты на животных начались примерно в 1980-х годах, но тогда это были только робкие шаги. Всякого рода красоты вроде ДНК-принтеров, экспрессирующихся векторов для эукариотов у нас не было.

Куда мы реально можем вмешаться?

Плазмиды


Для начала можно не трогать ядро клетки, которое содержит основную генетическую информацию. Можно воспользоваться плазмидами.

1) Хромосомная ДНК бактерии 2) Плазмиды

Патчим kernel

Далее, у нас есть возможность непосредственно отредактировать фрагмент кода в ядре. Это более инвазивная процедура и она уже сопряжена с рисками неточной вставки или вырезания кусочка ДНК. Но это практически единственный вариант радикально починить какой-то тяжелый генетический дефект, так как соматические клетки будут делиться и передавать пропатченную версию ДНК своим потомкам.

Митохондрии

Вирусный вектор — это как шприц

Первый ключевой момент — разработка инструментария доставки — вирусных векторов. Первый такой вирус для млекопитающих был разработан в 1984 году. В качестве молекулярного шприца использовали мышиный ретровирус. Он сам по себе являлся весьма неприятным инструментом, так как с высокой вероятностью провоцировал онкологические заболевания. Собственно, его второе название murine leukemia virus (MLVs). В дальнейшем разработки перешли на более безопасные варианты.

Что вообще такое вирусный вектор? Это такой специально модифицированный вирус, который срабатывает только один раз. Как шприц. Для этого он должен отвечать нескольким критериям:

Безопасность

Вирусный вектор не должен иметь возможность самопроизвольно размножаться. Для этого у них есть встроенный kill-switch. Их геном изначально так поврежден, что автономно размножаться они не могут. В лабораторной среде они размножаются на культуре клеток только в присутствии незаменимых компонентов и дополнительных вспомогательных вирусов, которые производят часть нужных для сборки белков. То есть в культуральном флаконе лаборатории размножается, а в организме срабатывает один раз, выходит из клетки в полусобранном виде и умирает.

Низкая цитотоксичность

Многие вирусы очень жестоко обращаются с клетками носителя. После фазы инкубации клетка дохнет от истощения и из ее бренных останков во все стороны разлетаются новые вирионы. При этом есть и вирусы, которые особо не влияют на нормальную физиологию клеток, на которых паразитируют. Например, аденовирусы.

Стабильность

Специфичность типа клеток

Вирус должен доставить свою нагрузку не абы куда, а точно в конкретный тип клеток. Это значит, что если нам надо вылечить заболевание, связанное с дефектными эритроцитами, то вирус должен очень точно поражать именно мультипотентные стволовые клетки-предшественники клеток крови. И при этом не зацепить, например, мышечную ткань.

Что уже реально делают в плане генотерапии

Первая генетическая коррекция человека была проведена в 1990 году.Четырёхлетняя Ашанти ДеСильва получила лечение от тяжелого генетического дефекта сложного комбинированного иммунодефицита, связанного с недостатком фермента ADA. Надо отметить, что редактировали не геном стволовых клеток, которые производят Т-лимфоциты, а уже взрослые Т-клетки из ее же собственной донорской крови. То есть она нуждалась в повторении этих процедур в дальнейшем. Далее была серия успешных экспериментальных протоколов для лечения SCID (Severe combined immunodeficiency) по схожей методике.

В 1999 году произошел инцидент, который ощутимо затормозил исследования в этой области. Джесси Гелсинджер, страдал от генетического заболевания печени, из-за которого она была неспособна обезвреживать аммиак. Через 4 суток после введения аденовирусного вектора со здоровой копией гена он умер в результате гипериммунного ответа и полиорганной недостаточности. В дальнейшем FDA пришли к выводу о многочисленных нарушениях в протоколе исследования.

В 2011 году признали терапию ВИЧ у пациента Геро Хюттера в 2008 году. Метод не особо применим для широкой аудитории, так как требует полного удаления своего костного мозга, а затем имплантация скорректированных клеток с двойной дельта-32 мутацией, которая отключает рецептор CCR5.

К 2013 году в мире было разрешено всего пять генных препаратов. Три от онкологии, глибера для лечения наследственного дефицита липопротеинлипазы и неоваскулген. Последний, кстати, разработали полностью у нас.

Неоваскулген

image


Результаты лечения Неоваскулгеном.

Этот препарат относится к плазмидным, то есть он не редактирует свой геном клетки, а только доставляет в нее плазмиды, которые работают ограниченное время.

Препарат представляет собой кольцевую ДНК (плазмиду), несущую человеческий ген VEGF 165, кодирующий синтез фактора роста эндотелия сосудов (VEGF — Vascular Endothelial Growth Factor). Стимулируя образование и рост коллатеральных сосудов, Неоваскулген призван оказать длительный лечебный эффект и улучшить качество жизни пациентов. Развитие микроциркуляторного русла в ишемизированной ткани нижней конечности способствует насыщению тканей кислородом, заживлению язв, увеличивает дистанцию безболевой ходьбы.

Механизм действия интересный. Клетки в месте инъекции начинают синтезировать VEGF — это фактор роста сосудов. В результате, в этом участке начинает нарастать новая разветвленная капиллярная сеть. Это критично для пациентов с хронической ишемией нижних конечностей из-за диабета и атеросклероза, например. До этого препарата ампутаций было больше. Сейчас его протестировали еще и для использования в стоматологии для приживления имплантов.

Генопрепарат смешивают с костным материалом и ушивают. В итоге сосуды быстро прорастают и формируется нужная ткань без отторжения. На кроликах уже точно моделировали при трансплантации фрагментов черепа. Люди на очереди, насколько мне известно.

Zolgensma

image

Спинальная мышечная атрофия — заболевание очень мрачное, по клинике отчасти похожее на боковой амиотрофический склероз, которым страдал Хокинг, но имеет другие причины. В результате развития заболевания прогрессирует паралич, который заканчивается смертью из-за невозможности дышать.

Zolgensma — это первый лекарственный препарат для генной терапии спинальной мышечной атрофии. Выпускается компанией AveXis (Novartis). Рабочая копия гена SMN вводится с помощью аденоассоциированного вируса (AAV) серотипа 9, AAV9, который способен преодолевать гематоэнцефалический барьер и проникать в клетки пациента. Одна проблема — стоит совершенно чудовищных денег. Одна инъекция стоит больше 2,1 миллиона долларов (около 152 миллионов рублей). Но результаты тоже потрясающие. У людей восстанавливается моторная функция и в дальнейшем заболевание не прогрессирует. По идее, такие дорогостоящие манипуляции должно оплачивать государство. Для отдельных людей стоимость лечения редких заболеваний просто неподъемная.

Что дальше?

Вот тут вопрос очень сложный. Мы действительно накапливаем дефектные гены в популяции. Раньше ребенок с пороком сердца бы просто умер — сейчас его спасут и он даст потомство с этим дефектом. Раньше много беременностей не сохранялось — сейчас беременных вытягивают с минимальным процентом выкидышей и завершают успешными родами. По сути, мы ломаем механизмы естественной выбраковки популяции. Это правильно и гуманно, но что-то надо делать с накапливающимися мутациями генофонда.

Либо мы придем к зеленым карточкам и разрешениям на размножение, либо научимся надежно и безопасно исправлять генетические аномалии. Было бы круто выкинуть близорукость, системную дисплазию соединительной ткани и кучу других врожденных дефектов. А еще наконец починить этот дурацкий сломанный ген, отвечающий за синтез витамина С из глюкозы, как у всех нормальных млекопитающих.

Вот только дальше нас ждет неизвестное будущее. Больше всего настораживает потенциальное расслоение общества, когда самые богатые слои населения будут модифицировать своих детей на отсутствие сахарного диабета, атеросклероза, а заодно еще и задавить немного миостатин, чтобы выглядели атлетичными без особых усилий. Круто же. Но пугает.



Агрессивные T-клетки (оранжевые) атакуют клетки злокачественной раковой опухоли в процессе вирусной терапии T-VEC

27 октября 2015 года администрация FDA выдала разрешение на использование генетически модифицированного вируса герпеса talimogene laherparepvec (T-VEC) для лечения меланомы (рак кожи), одной из самой агрессивных форм рака. Четырьмя днями ранее это лекарство одобрило Европейское агентство по лекарственным препаратам.

Особенность меланомы — слабая ответная реакция организма или её отсутствие, из-за чего меланома зачастую стремительно прогрессирует. В то же время многие вирусы могут атаковать конкретно раковые клетки. Злокачественная опухоль снижает антивирусную реакцию организма, это открывает широкие возможности для применения именно вирусной терапии.

Попытки использовать вирусы для нападения на раковые клетки предпринимались более ста лет. Ещё в 19 веке врачи заметили, что пациенты с раковой опухолью иногда неожиданно входят в ремиссию при вирусном заражении. В 1950-60-е гг тему начали особенно активно изучать, инфицируя раковых больных сотнями разных вирусов. Иногда терапия уничтожала опухоль, а иногда убивала пациента.


В отличие от диких вирусов 20 века, нынешние генетически модифицированные организмы аккуратно заточены для убийства именно раковых клеток. Кроме того, в них специально встроены гены, которые активируют иммунную систему организма, что делает лечение ещё более эффективным. Тот же T-VEC способен проникать в здоровые клетки, но не может там размножаться.

При лечении нужно произвести инъекцию T-VEC в опухоль. Лекарство должно эффективно уменьшить опухоль в любом органе. Онкологи добавляют, что при совмещении T-VEC с другими видами терапии эффективность лечения возрастает.

Сейчас учёные работают над тем, чтобы замаскировать генетически модифицированный вирус от иммунной системы. Тогда можно будет вводить его непосредственно в вену, и с потоком крови он сам найдёт раковые клетки и уничтожит их во всём теле.

Читайте также: