Филогенетические деревья вирус гриппа

Обновлено: 25.04.2024

Введение. Варианты вируса гриппа (ВГ) А подтипа Н7, как и Н5, обладают высоким пандемическим потенциалом. Однако имеющиеся сведения об антигенной структуре гемагглютинина (HA) Н7 значительно уступают по объёму аналогичным данным в отношении НА подтипа Н5.

Цели исследования – разработка и характеристика панели моноклональных антител (МКАТ), направленных к НА подтипа Н7 возбудителя гриппа А.

Материал и методы. Культуру вируса накапливали в 10-дневных куриных эмбрионах. Очистку и концентрацию вирусных частиц, определение концентрации белка, получение МКАТ и асцитных жидкостей, реакцию гемагглютинации (РГА) и реакцию торможения гемагглютинации (РТГА), оценку активности антител в непрямом иммуноферментном анализе (ИФА), а также определение изотипов МКАТ и реакцию нейтрализации (РН) проводили стандартными способами.

Результаты. Полученные МКАТ к штамму А/mallard/Netherlands/12/2000 (H7N3) исследованы в РТГА с набором штаммов разных лет выделения, относящихся к различным эволюционным группам. Во всех случаях антитела обладали сниженной реакционной способностью по сравнению с вирусом-иммуногеном. Выявлено перекрёстное взаимодействие МКАТ 9E11 и 9G12 в РТГА с ВГ А/H15.

Ключевые слова

Для цитирования:

For citation:

Введение

Изложенные факты определяют значимость исследования эволюционной изменчивости и антигенной структуры молекулы НА подтипа Н7. Достижению этой цели может способствовать использование специфичных моноклональных антител (МКАТ). Подобные антитела успешно применяют для типирования ВГ посредством таких простых и доступных иммунологических методов, как реакция нейтрализации (РН) и реакция торможения гемагглютинации (РТГА). МКАТ, полученные к НА H7, применяются с целью эпитопного картирования этой молекулы изолята А/ H7N9, выделенного в КНР [5–7]. Они также служат ценным исследовательским инструментом в процессе антигенной характеристики новых вирусных штаммов, что при сопоставлении с данными генетического анализа позволяет выявить закономерности эволюционной изменчивости ВГ.

Целями настоящей работы явились разработка и характеристика панели МКАТ, направленных к молекуле НА подтипа Н7 возбудителя гриппа А.

Материал и методы

Очистка и концентрация вируса. Вирусные частицы из содержащей ВГ A/mallard/Netherlands/12/2000 (H7N3) аллантоисной жидкости осаждали ультрацентрифугированием при 50 000 g в течение 2 ч и суспендировали в малом количестве (1 мл) 10 мМ Трис-ЭДТА буфера, рН 7,2 (STE). После этого выполняли очистку вируса через градиент 20–60% сахарозы ультрацентрифугированием при 100 000 g в течение 2,5 ч с последующим осаждением вирусных частиц из зоны 36–40% сахарозы на дно при 120 000 g на протяжении 1 ч. Осадок ресуспендировали в буфере STE. Полученную суспензию хранили до исследования в замороженном состоянии при −75 °С.

Получение моноклональных антител. МКАТ к вирусу А/mallard/Netherlands/12/2000 (H7N3) получали по модифицированному методу, описанному ранее [10].

Реакция гемагглютинации и реакция торможения гемагглютинации. Реакции гемагглютинации (РГА) и торможения гемагглютинации (РТГА) ставили стандартным методом в соответствии с методическими рекомендациями НИИ гриппа [9]. За титр антител принимали их наибольшее разведение, полностью подавляющее гемагглютинацию 8 ГАЕ вируса (ГАЕ – гемагглютинирующая единица).

Оценку активности полученных моноклональных антител в непрямом иммунофлуоресцентном анализе выполняли согласно описанной ранее методике [10].

Оценку нейтрализующей активности моноклональных антител в микрокультуральном иммунофлуоресцентном анализе также проводили по описанной ранее методике [10].

Построение филогенетических деревьев вирусов гриппа А подтипа Н7. При построении деревьев применяли 2 различные программы: FastTree v.2.1.10 [11], в основе которой заложен метод присоединения соседей (neighbor-joining, NJ) с последующим уточнением методами минимальной эволюции (замены ближайшего соседа – nearest neighbour interchange, NNI и обрезки/пересадки ветвей субдеревьев – subtree pruning and regrafting, SPR) и максимального правдоподобия (maximal likehood estimation, MLE) на матрице замен LG [12], и алгоритм RAxML v.8.2.10 [13], использующий MLE на матрицах замен LG и FLU [14].

Результаты

В результате отбора положительных клонов получена панель из 7 МКАТ (7D11, 7H9, 8A3, 9B2, 9B10, 9E11 и 9G2), специфически взаимодействующих с очищенным концентратом вируса-иммуногена A/mallard/Netherlands/12/2000(H7N3). Согласно данным вестерн-блот анализа все антитела оказались направленными к большой субъединице (НА1) НА (молекулярная масса 57 кДа), что предполагает их взаимодействие с линейными эпитопами данной молекулы [15][16]. Результаты определения класса и субкласса тяжёлых цепей в составе иммуноглобулина показали, что все МКАТ принадлежали к классу IgG, но к различным его изотипам: в частности, 7D11 к IgG3, 7H9 и 9E11 – к IgG2a, 9B2 и 9B10 – к IgG1. Полученные МКАТ взаимодействовали в ИФА с вирусом A/mallard/Netherlands/12/2000 (H7N3) в диапазоне титров 10 −4 –10 −7 . Обнаружено, что антитела 7D11, 7H9 и 9B2 обладали значительной нейтрализующей активностью по отношению не только к вирусу-иммуногену, но и к высокопатогенному штамму A/Anhui/1/2013 (H7N9). Характеристика полученных МКАТ представлена в табл. 1.

Таблица 1. Иммунохимические и биологические свойства моноклональных антител к вирусу гриппа А/Н7N3
Table 1. Immunochemical and biological properties of monoclonal antibodies to influenza A/H7N3 virus



Примечание. *приведены данные одного из 3 типичных экспериментов; **титры МКА представлены в обратных разведениях; ***нейтра- лизующим титром моноклональных антител считали последнее их разведение, при котором наблюдалось 2-кратное снижение оптической плотности при длине волны 450 нм (ОП450) по сравнению с контролем репродукции вируса; н.и. – не исследовались; НА1 – большая субъеди- ница молекулы гемагглютинина; ИФА – иммуноферментный анализ.
Note. * data from one of three typical experiments are presented; **monoclonal antibodies titers are presented in reverse dilutions; ***the neutralizing titer of monoclonal antibodies was considered to be the last dilution in which there was a twofold decrease in optical density at a wavelength of 450 nm (OD450) compared to the control of virus reproduction; n.i., not investigated; HA1, large subunit of hemagglutinin molecule; ELISA, enzyme-linked immunosorbent assay.

Для типирования и антигенного анализа вирусных штаммов наиболее широкое применение находит РТГА. Установлено, что все МКАТ обладали выраженной антигемагглютинирующей активностью в отношении вируса-иммуногена A/mallard/ Netherlands/12/2000 (H7N3) (табл. 2). По степени интенсивности взаимодействия в РТГА полученные антитела можно условно разделить на 2 группы: 1) МКАТ (8А3 и 9B10) со средней активностью (титры 1 : 640 – 1 : 1280); 2) МКАТ (7D11, 7H9, 9B2, 9E11 и 9G12) с высокой активностью (титры 1 : 10 3 – 1 : 2 × 10 3 ). Полученные антитела исследованы в данной реакции с набором штаммов ВГ подтипа Н7 разных лет выделения, относящихся к различным эволюционным группам (табл. 2). Во всех случаях МКАТ обладали сниженной реакционной способностью по сравнению с таковой для вируса-иммуногена. Кроме того, представлялось важным оценить реакционную способность антител с ВГ различных подтипов НА – как эволюционно близких к Н7 (Н15), так и эволюционно удалённых (Н5,Н1) (рис. 1) [17]. В результате выявлено перекрёстное взаимодействие 9E11 и 9G12 в РТГА с вирусом А/H15. С возбудителями подтипов H5N3 и H1N1 все полученные нами МКАТ не реагировали.


Рис. 1. Эволюционные связи между вирусами гриппа водоплавающих птиц и млекопитающих, основанные на результатах полногеномного секвенирования генов гемагглютинина репрезентативных вирусных штаммов [17].
Fig. 1. Evolutionary relationships between waterfowl and mammalian influenza viruses based on the results of genome-wide gene sequencing of representative viral strains [17].

Таблица 2. Активность моноклональных антител в реакции торможения гемагглютинации с различными штаммами вируса гриппа А (титры)
Table 2. Monoclonal antibodies activity in hemagglutination inhibition test with different influenza A virus strains (titers)



Примечание. * приведены данные одного из 3 типичных экспериментов; **приведены обратные величины титра моноклональных антител в реакции торможения гемагглютинации; н.и. – не исследовались.
Note. * data from one of three typical experiments are presented; **the inverse values of the monoclonal antibodies titer in hemagglutination inhibition are given; n.i., not investigated.

Чтобы теоретически подтвердить филогенетическую удалённость исследованных штаммов ВГ А/H7 от использованного нами для получения МКАТ вируса A/mallard/Netherlands/12/2000 (H7N3), проведено построение филогенетических деревьев с использованием базы данных GISAID EpiFluTM для возбудителей гриппа А с НА подтипа Н7. Для построения деревьев отобрано 4491 полных и полностью определённых аминокислотных последовательностей вирусов с НА H7, идентифицированных с 1902 по 2020 г., среди которых оказалось 1999 уникальных. Их выравнивание выполнено с помощью программы Clustal Omega [18] и признано нами приемлемым. Как и ожидалось, основные различия в длине последовательностей были обусловлены наличием вариабельности в сайте нарезания – между большой (HА1) и малой (HА2) субъединицами молекулы НА.


Рис. 2. Филогенетическое дерево гемагглютинина H7, построенное программой RAxML с матрицей замен FLU.
Примечание. Шкала характеризует дату сбора штаммов (от 1902 до 2020 г.).
Fig. 2. The phylogenetic tree for H7 hemagglutinin constructed by the RAxML program with the FLU substitution matrix.
Note. The scale characterizes the date of collection of strains (from 1902 to 2020).

Таблица 3. Взвешенная дистанция Робинсона–Фулдса между филогенетическими деревьями (в процентах)
Table 3. The Robinson–Foulds weighted distance between phylogenetic trees (at percentage)



Примечание. За расстояние между деревьями принимается сумма A + B (где А – количество разбиений первого дерева, которые не при- сутствуют во втором, B – аналогичное количество для второго дерева, которые не присутствуют в первом), отнесённая к общему количеству разбиений и выраженная в процентах (взвешенная дистанция Робинсона–Фулдса). В ячейках таблицы приведены различия в процентах между деревьями, построенными при помощи разных программ.
Note. The distance between the trees is taken as the sum of A + B (where A is the number of partitions of the first tree that are not present in the second, B is the number of partitions of the second tree that are not present in the first) assigned to the total number of partitions and expressed in percent (Robinson–Foulds weighted distance). The table cells show the percentage differences between trees constructed using different programs.

Возбудитель гриппа А с гемагглютинином подтипа Н7 может стать потенциальной причиной будущей пандемии [21]. В этой связи поиск направленных против данного патогена средств, а также компонентов диагностических тест-систем [22][23] для быстрой идентификации и типирования новых изолятов является актуальной задачей как для ветеринарии, так и для общественного здравоохранения. С этой целью в настоящем исследовании разработана панель МКАТ к молекуле НА низкопатогенного ВГ A/mallard/Netherlands/12/2000 (H7N3). Ранее он был выбран в качестве донора НА для создания вируса-реассортанта – вакцинного штамма [24]. В более поздней работе предложены векторные вакцины на основе этого же штамма [25]. Отметим, что A/mallard/Netherlands/12/2000 (H7N3), так же как и A/mallard/Netherlands/2/2000 (H10N7), послужил прототипом высокопатогенного природного реассортанта A/chicken/Netherlands/1/2003 (H7N7), вызвавшего эпизоотию в Европе в начале XX в. Таким образом, выбор возбудителя-иммуногена для получения МКАТ был сделан не случайно.

К сожалению, МКАТ 9E11 и 9G12, обнаружившие связывание в РТГА с вирусом Н15 (эволюционно близким к Н7), нельзя использовать для дифференциальной диагностики и типирования НА в иммунологических тестах. В дальнейшем планируется исследовать их реактогенную способность по отношению к более развёрнутому спектру возбудителей гриппа с различными подтипами НА.

Заключение

Достаточно высокая вируснейтрализующая активность антител 7D11, 7H9 и 9B2 предполагает возможность их перспективного применения в качестве реагентов диагностических тест-систем, профилактических и лечебных средств.

Список литературы

8. Суховецкая В.Ф., Дондурей Е.А., Дриневский В.П., Соминина А.А., Майорова В.Г., Писарева М.М., и др. Методические рекомендации. Выделение вирусов гриппа в клеточных культурах и куриных эмбрионах и их идентификация. Санкт-Петербург; 2006.

14. Кущ А.А., Климова Р.Р., Масалова О.В., Фёдорова Н.Е., Ботиков А.Г., Федякина И.Т., и др. Получение и свойства моноклональных антител к высокопатогенному штамму вируса гриппа птиц A(H5N1), выделенного на территории Российской Федерации. Вопросы вирусологии. 2008; 53(5): 9–14.

15. Климова Р.Р., Масалова О.В., Бурцева Е.И., Чичев Е.В., Леснова Е.И., Оскерко Т.А., и др. Моноклональные антитела к пандемическому вирусу гриппа A/IIV-Moscow/01/2009 (H1N1)swl, обладающие высокой вируснейтрализующей активностью. Вопросы вирусологии. 2011; 56(3): 15–20.

16. Matrosovich M.N., Klenk H.-D., Kawaoka Y. Receptor specificity, host-range, and pathogenicity of influenza viruses. In: Kawaoka Y., ed. Influenza Virology: Current Topics. Wymondham, UK: Caister Academic Press; 2006: 95–138.

25. Боголюбов А.С., Жданова О.В., Кравченко М.В. Справочник по орнитологии. Миграции птиц. М.: Экосистема; 2006.

Январь и февраль - традиционные месяцы, когда эпидемия гриппа в России набирает обороты. Каждый год ситуация осложняется появлением опасных штаммов - таких как вирус птичьего гриппа, в этом году это штамм N1H1 - свиной грипп.

Ежегодно группа ученых создает предсказание штамма вируса, который окажется наиболее жизнеспособным и придет в эпидемию следующего года. Исследования, благодаря которым происходит предсказание - ведутся при помощи NGS секвенирования.

В результате секвенирования РНК/ДНК вируса создаются так называемые филогенетические деревья. Такие деревья показывают, как идет эволюция штаммов, а также в какие моменты идет разветвление родственной структуры вирусов. На рис.1 показано филогенетическое дерево эволюции вируса гриппа в последние годы.

1_2.jpg

Так, видно, что с каждым годом популяции вируса меняются, происходит перетекание одного штамма в другой. Каждые несколько лет вирус настолько обновляется, что меняется его название.

Филодинамические методики комбинируют эпидемеологические и генетическую информацию для анализа эволюционной и временной динамики быстро развивающихся патогенов, таких как вирус гриппа или ВИЧ. Таким образом - происходит предсказание, какой штамм быстро меняющегося вируса будет актуален в следующем эпидемиологическом сезоне, и создается вакцина для массового использования для населения на следующий сезон.

Однако в некоторые годы, из-за большого количества непредсказуемых факторов, прогноз на следующий год не совпадает с ожидаемым, и в такие годы те, кто сделал прививку, заболевают. Что вызывает оптимизм в этой ситуации - в связи с развитием методик секвенирования, и с их удешевлением, охват анализируемых штаммов увеличивается. Следовательно - и вероятность подтверждения прогноза также. Значит, случаев, когда вакцинация не будет помогать - будет все меньше.

Что предлагает СкайДжин для секвенирования NGS?

Мы с удовольствием предлагаем все необходимые реагенты и лабораторный пластик, необходимые для пробоподготовки для секвенирования NGS на самых популярных платформах: Illumina, Ion Torrent, Solid, 454 Roche.

Мы надеемся, что информация в нашем обзоре будет интересна и полезна вам!

Георгий Александрович Базыкин — кандидат биологических наук, заведующий сектором молекулярной эволюции в Институте проблем передачи информации им. А. А. Харкевича РАН, ведущий научный сотрудник лаборатории эволюционной геномики факультета биоинженерии и биоинформатики МГУ им. М. В. Ломоносова. Занимается изучением различных вопросов биологической эволюции с использованием методов геномики и биоинформатики.

Юрий Эдуардович Стефанов — кандидат биологических наук, научный сотрудник Института молекулярной биологии РАН им. В. А. Энгельгарта и научный консультант студии научного дизайна Visual Science. Область научных интересов — эволюция мобильных генетических элементов, трехмерное компьютерное моделирование вирусных частиц.

В общественном сознании закрепилось довольно легкомысленное отношение к гриппу. Действительно, зачастую его симптомы не тяжелее простудных, да и беспокоит он нас не дольше недели, причем проходит обычно без всякого лечения. Однако история взаимодействий человека и вируса гриппа требует более серьезного подхода к этому патогену. Достаточно вспомнить, что одни из самых страшных пандемий прошлого века были вызваны этим вирусом * . Да и обычный сезонный грипп далеко не безвреден: по оценкам Всемирной организации здравоохранения, ежегодно от него и связанных с ним осложнений умирают сотни тысяч человек (в первую очередь, пожилые люди, младенцы и страдающие хроническими заболеваниями), а в годы тяжелых пандемий — миллионы. По числу унесенных жизней среди инфекционных заболеваний грипп уступает, пожалуй, только ВИЧ. Основная проблема профилактики и лечения гриппа связана с тем, что вирус очень быстро меняется, и каждый год мы имеем дело с его новыми формами, поведение которых далеко не всегда можно предсказать. Очередным шагом на пути к пониманию изменчивости вируса гриппа стал компьютерный анализ последовательностей аминокислот в белках вируса и нуклеотидов в его геноме.

Первая в мире полная достоверная модель вируса гриппа A/H1N1 с атомным разрешением, созданная в рамках проекта Viral Park компании Visual Science при участии Национального центра биотехнологии в Мадриде. Цель проекта — построение научно достоверных 3D-моделей распространенных вирусов человека с максимальной детализацией. Специалисты Visual Science собирают воедино данные огромного количества работ по молекулярной биологии, вирусологии и кристаллографии вирусов, мнения экспертов ведущих научных центров мира и результаты молекулярного моделирования, полученные научным отделом компании. Модель в значительной степени построена на основе данных, опубликованных исследовательскими коллективами под руководством: Хуана Ортина (Испанский национальный центр биотехнологий, Мадрид, Испания), Такеши Нода (Университет Токио, Япония), Роба Ригро (Отдел взаимодействий вируса и клетки, Гренобль, Франция) и Питера Розенталя (Национальный институт медицинских исследований, Лондон, Великобритания). Точное строение генома вируса гриппа удалось смоделировать благодаря сотрудничеству с Хайме Мартин-Бенито (Испанский национальный центр биотехнологий, Мадрид, Испания), группа которого добилась уникальных результатов в описании упаковки вирусного генетического материала. Создатели модели: Иван Константинов (руководитель проекта), Юрий Стефанов (научный консультант), Анастасия Бакулина (ведущий молекулярный моделлер), Дмитрий Щербинин (молекулярный моделлер), Александр Ковалевский (3D-моделлер)

Сегментированный геном

Общая длина генома вируса гриппа составляет приблизительно 13 500 нуклеотидов [2]. Три самых крупных (примерно по 2300 нуклеотидов) его сегмента (PA, PB1 и PB2) кодируют вирусную полимеразу — белок, копирующий РНК и состоящий из трех крупных субъединиц. Четвертый по длине (около 1750 нуклеотидов) сегмент (HA) отвечает за синтез гемагглютинина. Этот белок заякорен в липидной оболочке вируса и отвечает за его проникновение в клетку, связываясь с рецептором на поверхности клеточной мембраны [3]. В зависимости от того, какой именно вариант гемагглютинина несет вирус, связывание может быть более или менее крепким. После этого клетка поглощает вирус, помещая его в мембранный пузырек внутри цитоплазмы. Большинство макромолекулярных комплексов, поглощаемых таким образом, перевариваются клеткой. Однако вирус избегает этой участи: его мембрана сливается с мембраной пузырька, в результате чего ее содержимое оказывается в цитоплазме. В этом процессе гемагглютинин также играет важную роль. Затем геном вируса проникает в ядро, где с него может начать считываться информация.

Сегмент размером около 1550 нуклеотидов (NP) кодирует нуклеопротеин — белок, необходимый вирусу для упаковки РНК. Множество копий такого белка распределяется по каждому из геномных сегментов, связываясь с молекулой нуклеиновой кислоты. В результате фрагменты генома образуют нуклеопротеидные тяжи, сложенные пополам и закрученные в спираль, к каждому из которых прикрепляется своя копия полимеразного комплекса [4].

Сегмент M1/M2 длиной 1000 нуклеотидов, в соответствии со своим названием, кодирует сразу два белка — М1 и М2. Из молекул первого из них образован слой (матрикс), подстилающий вирусную липидную оболочку. Обычно М1 играет ключевую роль в формировании вирусных частиц, поскольку он взаимодействует одновременно с поверхностными белками вируса и внутренними компонентами вирусной частицы. Задача матриксного белка — собрать все составляющие воедино [6]. Белок М2 выполняет роль ионного канала. Он расположен в липидной оболочке вируса и способствует его распаковке в цитоплазме клетки [7].

Последний, самый короткий (из 865 нуклеотидов) сегмент РНК вируса гриппа отвечает за синтез двух белков, которые не попадают в зрелую вирусную частицу. Эти белки называются NS1 и NEP. Первый необходим вирусу, в частности, для того, чтобы блокировать считывание информации с клеточных молекул РНК [8]. Благодаря ему клетке приходится синтезировать преимущественно вирусные белки, оставляя свои собственные нужды. Второй белок, NEP, обеспечивает транспорт новообразованных геномных комплексов вируса из ядра к клеточной мембране, где происходит сборка вирионов [9].

Новые штаммы и поиск реассортаций

Классификация штаммов вируса гриппа основана прежде всего на том, какие именно варианты гемагглютинина и нейраминидазы входят в его состав. Широко известные комбинации букв H и N в сочетании с порядковыми номерами (например, H3N2) как раз и обозначают подтип вируса: гемагглютинин 3, нейраминидаза 2. Таких подтипов десятки, однако человека заражают лишь немногие — обычно те, у которых не слишком большие номера N и H. Наиболее давние хозяева вируса гриппа — птицы, от которых новые штаммы время от времени передаются домашнему скоту и, прямо или опосредованно, людям [10]. Чем более долгий период коэволюции провели вместе патоген и хозяин, тем менее болезненным становится их совместное существование. Птичьи штаммы вируса зачастую оказываются очень опасными после передачи новым хозяевам [11].

Известно, что именно реассортации сегментов РНК привели к возникновению штаммов, которые вызвали пандемии азиатского и гонконгского гриппа в 1957 и 1968 гг., унесшие около 2,5 млн жизней [12]. Возможно, что и испанский грипп начала прошлого века, число жертв которого шло на десятки миллионов, тоже появился в результате такой эволюционной схемы [13].

Подобное исследование можно провести с использованием геномов вируса гриппа, опубликованных в свободном доступе. Избрав в качестве объекта штаммы H3N2, можно составить выборку из 1376 сегментированных геномов, а затем сравнить между собой филогенетические деревья для этих вирусов, построенные в отдельности по каждому из геномных сегментов [15].

В результате такого сравнения оказалось, что число реассортаций примерно сопоставимо для разных сегментов: в ходе эволюции гриппа в популяции человека каждая пара сегментов в недавнем прошлом реассортировала около 50 раз.

Последствия реассортаций

После того как ветви, в которых произошли реассортации, были обнаружены, стало возможным оценить их влияние на накопление в сегментах вирусного генома точечных замен. Для этого можно сравнить время, прошедшее между каждой такой заменой и ближайшей предшествующей ей реассортацией, с тем, которое бы ожидалось из компьютерной модели, если бы реассортации не влияли на замены. Проведенный анализ показал, что по крайней мере в пяти из восьми сегментов генома мутации ускоренно накапливаются после реассортации. Наиболее ярко эффект проявился для нейраминидазы и белка PB1. Ускорение аминокислотных замен после реассортаций вирусных геномов указывает на то, что в такие периоды эволюции вируса гриппа прежде всего происходит адаптация белков к новому генетическому окружению. Из-за того, что вирусные белки взаимодействуют между собой, молекулы из разошедшихся штаммов вынуждены какое-то время изменяться, приспосабливаясь друг к другу.

Интересно, что у нейраминидаз наблюдалось 30 замен, расстояние от которых до ветви, несущей реассортацию, меньше того эволюционного расстояния, на котором мы бы ожидали встретить одну случайную синонимичную замену в гене данного белка. Такой результат свидетельствует о том, что все эти 30 мутаций произошли и закрепились необычайно быстро, и что необходимость быстрой адаптации возникла именно благодаря тому, что соответствующий сегмент генома попал в новое генетическое окружение.

Реассортация — это резкое эволюционное изменение, которое поначалу может снижать общую приспособленность вируса к условиям окружающей среды и к организму-хозяину. Однако иногда оказывается, что из-за такой перетасовки белков из разных штаммов новая форма патогена оказывается более приспособленной, чем штаммы-предшественники, получая возможность эффективнее распространиться [18]. Похоже, что за коррекцию первичного вредного эффекта от реассортации как раз и отвечают быстро закрепляющиеся адаптивные мутации.

Предсказания, полученные только статистическими методами, — путем анализа последовательностей белков и кодирующих их генов, — конечно, не могут иметь стопроцентную точность. Действительно ли взаимодействуют две определенные аминокислоты, можно проверить экспериментально. Однако каждый белок вируса состоит из сотен аминокислот, так что возможны десятки тысяч разных взаимодействий. Постановка такого числа экспериментов практически неосуществимы. Биоинформатический анализ позволяет расставлять приоритеты: выбирать и анализировать только те аминокислоты, которые участвуют во взаимодействиях, экономя время и силы экспериментаторов. Кроме того, такой подход позволяет понять, насколько взаимодействия, приводящие к вредности реассортаций, распространены на уровне всего генома.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 13-04-02098) и Министерства образования и науки Российской Федерации (проект 11.G34.31.0008).

Литература
1. Steinhauer D. A., Domingo E., Holland J. J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase // Gene. 1992. V. 22. № 2. P. 281–288.
2. Teng Q., Hu T., Li X. et al. Complete genome sequence of an H3N2 avian influenza virus isolated from a live poultry market in Eastern China // J. Virol. 2012. V. 86. № 21. P. 11944. DOI: 10.1128/JVI.02082-12.
3. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin // Cell. 1993. V. 73. № 4. P. 823–832.
4. Arranz R., Coloma R., Chichуn F. J. et al. The structure of native influenza virion ribonucleoproteins // Science. 2012. V. 338. № 6114. P. 1634–1637. DOI: 10.1126/science.1228172.
5. Kamali A., Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review // Infection and Drug Resistance. 2013. № 6. P. 187–198. DOI: 10.2147/IDR.S36601.
6. Nayak D. P., Hui E. K., Barman S. Assembly and budding of influenza virus // Virus Res. 2004. V. 106. № 2. P. 147–165.
7. Lear J. D. Proton conduction through the M2 protein of the influenza A virus; a quantitative, mechanistic analysis of experimental data // FEBS Lett. 2003. V. 552. № 1. P. 17–22.
8. Hale B. G., Randall R. E., Ortнn J. et al. The multifunctional NS1 protein of influenza A viruses // J. Gen. Virol. 2008. V. 89. № 10. P. 2359–2376. DOI: 10.1099/vir.0.2008/004606-0.
9. Robb N. C, Smith M., Vreede F. T. et al. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome // J. Gen. Virol. 2009. V. 90. № 6. P. 1398–1407. DOI: 10.1099/vir.0.009639-0.
10. El Zowalaty M. E., Bustin S. A., Husseiny M. I. et al. Avian influenza: virology, diagnosis and surveillance // Future Microbiol. 2013. V. 8. № 9. P. 1209–1227. DOI: 10.2217/fmb.13.81.
11. Kaplan B. S., Webby R. J. The avian and mammalian host range of highly pathogenic avian H5N1 influenza // Virus Res. 2013. V. 178. № 1. P. 3–11. DOI: 10.1016/j.virusres.2013.09.004.
12. Kilbourne E. D. Influenza pandemics of the 20th century // Emerg. Infect. Dis. 2006. V. 12. № 1. P. 9–14.
13. Suzuki Y. A phylogenetic approach to detecting reassortments in viruses with segmented genomes // Gene. 2010. V. 464. № 1–2. P. 11–16. DOI: 10.1016/j.gene.2010.05.002.
14. Nagarajan N., Kingsford C. GiRaF: robust, computational identification of influenza reassortments via graph mining // Nucleic Acids Research. 2011. V. 39. № 6. e34. DOI: 10.1093/nar/gkq1232.
15. Neverov A. D., Lezhnina K. V., Kondrashov A. S., Bazykin G. A. Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes // PLoS Genet. 2014. V. 10. № 1. e1004037. DOI: 10.1371/journal.pgen.1004037
16. Wolf Y. I., Viboud C., Holmes E. C. et al. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus // Biol. Direct. 2006. V. 1. P. 34.
17. Kryazhimskiy S., Dushoff J., Bazykin G. A. et al. Prevalence of epistasis in the evolution of influenza A surface proteins // PLoS Genet. 2011. V. 7. № 2. e1001301. DOI: 10.1371/journal.pgen.1001301.
18. Li K. S., Guan Y., Wang J. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia // Nature. 2004. V. 430. № 6996. P. 209–213.
19. Ferguson N. M., Fraser C., Donnelly C. A. et al. Public health. Public health risk from the avian H5N1 influenza epidemic // Science. 2004. V. 304. № 5673. P. 968–969.
20. Yong E. Influenza: Five questions on H5N1 // Nature. 2012. V. 486. № 7404. P. 456–458. DOI: 10.1038/486456a.
21. Herfst S., Schrauwen E. J., Linster M. et al. Airborne transmission of influenza A/H5N1 virus between ferrets // Science. 2012. V. 336. № 6088. P. 1534–1541. DOI: 10.1126/science.1213362.
22. Imai M., Watanabe T., Hatta M. et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets // Nature. 2012. V. 486. № 7403. P. 420–428. DOI: 10.1038/nature10831.
23. Russell C. A., Fonville J. M., Brown A. E. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host // Science. 2012. V. 336. № 6088. P. 1541–1547. DOI: 10.1126/science.1222526.

Введение. Варианты вируса гриппа (ВГ) А подтипа Н7, как и Н5, обладают высоким пандемическим потенциалом. Однако имеющиеся сведения об антигенной структуре гемагглютинина (HA) Н7 значительно уступают по объёму аналогичным данным в отношении НА подтипа Н5.

Цели исследования – разработка и характеристика панели моноклональных антител (МКАТ), направленных к НА подтипа Н7 возбудителя гриппа А.

Материал и методы. Культуру вируса накапливали в 10-дневных куриных эмбрионах. Очистку и концентрацию вирусных частиц, определение концентрации белка, получение МКАТ и асцитных жидкостей, реакцию гемагглютинации (РГА) и реакцию торможения гемагглютинации (РТГА), оценку активности антител в непрямом иммуноферментном анализе (ИФА), а также определение изотипов МКАТ и реакцию нейтрализации (РН) проводили стандартными способами.

Результаты. Полученные МКАТ к штамму А/mallard/Netherlands/12/2000 (H7N3) исследованы в РТГА с набором штаммов разных лет выделения, относящихся к различным эволюционным группам. Во всех случаях антитела обладали сниженной реакционной способностью по сравнению с вирусом-иммуногеном. Выявлено перекрёстное взаимодействие МКАТ 9E11 и 9G12 в РТГА с ВГ А/H15.

Ключевые слова

Для цитирования:

For citation:

Введение

Изложенные факты определяют значимость исследования эволюционной изменчивости и антигенной структуры молекулы НА подтипа Н7. Достижению этой цели может способствовать использование специфичных моноклональных антител (МКАТ). Подобные антитела успешно применяют для типирования ВГ посредством таких простых и доступных иммунологических методов, как реакция нейтрализации (РН) и реакция торможения гемагглютинации (РТГА). МКАТ, полученные к НА H7, применяются с целью эпитопного картирования этой молекулы изолята А/ H7N9, выделенного в КНР [5–7]. Они также служат ценным исследовательским инструментом в процессе антигенной характеристики новых вирусных штаммов, что при сопоставлении с данными генетического анализа позволяет выявить закономерности эволюционной изменчивости ВГ.

Целями настоящей работы явились разработка и характеристика панели МКАТ, направленных к молекуле НА подтипа Н7 возбудителя гриппа А.

Материал и методы

Очистка и концентрация вируса. Вирусные частицы из содержащей ВГ A/mallard/Netherlands/12/2000 (H7N3) аллантоисной жидкости осаждали ультрацентрифугированием при 50 000 g в течение 2 ч и суспендировали в малом количестве (1 мл) 10 мМ Трис-ЭДТА буфера, рН 7,2 (STE). После этого выполняли очистку вируса через градиент 20–60% сахарозы ультрацентрифугированием при 100 000 g в течение 2,5 ч с последующим осаждением вирусных частиц из зоны 36–40% сахарозы на дно при 120 000 g на протяжении 1 ч. Осадок ресуспендировали в буфере STE. Полученную суспензию хранили до исследования в замороженном состоянии при −75 °С.

Получение моноклональных антител. МКАТ к вирусу А/mallard/Netherlands/12/2000 (H7N3) получали по модифицированному методу, описанному ранее [10].

Реакция гемагглютинации и реакция торможения гемагглютинации. Реакции гемагглютинации (РГА) и торможения гемагглютинации (РТГА) ставили стандартным методом в соответствии с методическими рекомендациями НИИ гриппа [9]. За титр антител принимали их наибольшее разведение, полностью подавляющее гемагглютинацию 8 ГАЕ вируса (ГАЕ – гемагглютинирующая единица).

Оценку активности полученных моноклональных антител в непрямом иммунофлуоресцентном анализе выполняли согласно описанной ранее методике [10].

Оценку нейтрализующей активности моноклональных антител в микрокультуральном иммунофлуоресцентном анализе также проводили по описанной ранее методике [10].

Построение филогенетических деревьев вирусов гриппа А подтипа Н7. При построении деревьев применяли 2 различные программы: FastTree v.2.1.10 [11], в основе которой заложен метод присоединения соседей (neighbor-joining, NJ) с последующим уточнением методами минимальной эволюции (замены ближайшего соседа – nearest neighbour interchange, NNI и обрезки/пересадки ветвей субдеревьев – subtree pruning and regrafting, SPR) и максимального правдоподобия (maximal likehood estimation, MLE) на матрице замен LG [12], и алгоритм RAxML v.8.2.10 [13], использующий MLE на матрицах замен LG и FLU [14].

Результаты

В результате отбора положительных клонов получена панель из 7 МКАТ (7D11, 7H9, 8A3, 9B2, 9B10, 9E11 и 9G2), специфически взаимодействующих с очищенным концентратом вируса-иммуногена A/mallard/Netherlands/12/2000(H7N3). Согласно данным вестерн-блот анализа все антитела оказались направленными к большой субъединице (НА1) НА (молекулярная масса 57 кДа), что предполагает их взаимодействие с линейными эпитопами данной молекулы [15][16]. Результаты определения класса и субкласса тяжёлых цепей в составе иммуноглобулина показали, что все МКАТ принадлежали к классу IgG, но к различным его изотипам: в частности, 7D11 к IgG3, 7H9 и 9E11 – к IgG2a, 9B2 и 9B10 – к IgG1. Полученные МКАТ взаимодействовали в ИФА с вирусом A/mallard/Netherlands/12/2000 (H7N3) в диапазоне титров 10 −4 –10 −7 . Обнаружено, что антитела 7D11, 7H9 и 9B2 обладали значительной нейтрализующей активностью по отношению не только к вирусу-иммуногену, но и к высокопатогенному штамму A/Anhui/1/2013 (H7N9). Характеристика полученных МКАТ представлена в табл. 1.

Таблица 1. Иммунохимические и биологические свойства моноклональных антител к вирусу гриппа А/Н7N3
Table 1. Immunochemical and biological properties of monoclonal antibodies to influenza A/H7N3 virus



Примечание. *приведены данные одного из 3 типичных экспериментов; **титры МКА представлены в обратных разведениях; ***нейтра- лизующим титром моноклональных антител считали последнее их разведение, при котором наблюдалось 2-кратное снижение оптической плотности при длине волны 450 нм (ОП450) по сравнению с контролем репродукции вируса; н.и. – не исследовались; НА1 – большая субъеди- ница молекулы гемагглютинина; ИФА – иммуноферментный анализ.
Note. * data from one of three typical experiments are presented; **monoclonal antibodies titers are presented in reverse dilutions; ***the neutralizing titer of monoclonal antibodies was considered to be the last dilution in which there was a twofold decrease in optical density at a wavelength of 450 nm (OD450) compared to the control of virus reproduction; n.i., not investigated; HA1, large subunit of hemagglutinin molecule; ELISA, enzyme-linked immunosorbent assay.

Для типирования и антигенного анализа вирусных штаммов наиболее широкое применение находит РТГА. Установлено, что все МКАТ обладали выраженной антигемагглютинирующей активностью в отношении вируса-иммуногена A/mallard/ Netherlands/12/2000 (H7N3) (табл. 2). По степени интенсивности взаимодействия в РТГА полученные антитела можно условно разделить на 2 группы: 1) МКАТ (8А3 и 9B10) со средней активностью (титры 1 : 640 – 1 : 1280); 2) МКАТ (7D11, 7H9, 9B2, 9E11 и 9G12) с высокой активностью (титры 1 : 10 3 – 1 : 2 × 10 3 ). Полученные антитела исследованы в данной реакции с набором штаммов ВГ подтипа Н7 разных лет выделения, относящихся к различным эволюционным группам (табл. 2). Во всех случаях МКАТ обладали сниженной реакционной способностью по сравнению с таковой для вируса-иммуногена. Кроме того, представлялось важным оценить реакционную способность антител с ВГ различных подтипов НА – как эволюционно близких к Н7 (Н15), так и эволюционно удалённых (Н5,Н1) (рис. 1) [17]. В результате выявлено перекрёстное взаимодействие 9E11 и 9G12 в РТГА с вирусом А/H15. С возбудителями подтипов H5N3 и H1N1 все полученные нами МКАТ не реагировали.


Рис. 1. Эволюционные связи между вирусами гриппа водоплавающих птиц и млекопитающих, основанные на результатах полногеномного секвенирования генов гемагглютинина репрезентативных вирусных штаммов [17].
Fig. 1. Evolutionary relationships between waterfowl and mammalian influenza viruses based on the results of genome-wide gene sequencing of representative viral strains [17].

Таблица 2. Активность моноклональных антител в реакции торможения гемагглютинации с различными штаммами вируса гриппа А (титры)
Table 2. Monoclonal antibodies activity in hemagglutination inhibition test with different influenza A virus strains (titers)



Примечание. * приведены данные одного из 3 типичных экспериментов; **приведены обратные величины титра моноклональных антител в реакции торможения гемагглютинации; н.и. – не исследовались.
Note. * data from one of three typical experiments are presented; **the inverse values of the monoclonal antibodies titer in hemagglutination inhibition are given; n.i., not investigated.

Чтобы теоретически подтвердить филогенетическую удалённость исследованных штаммов ВГ А/H7 от использованного нами для получения МКАТ вируса A/mallard/Netherlands/12/2000 (H7N3), проведено построение филогенетических деревьев с использованием базы данных GISAID EpiFluTM для возбудителей гриппа А с НА подтипа Н7. Для построения деревьев отобрано 4491 полных и полностью определённых аминокислотных последовательностей вирусов с НА H7, идентифицированных с 1902 по 2020 г., среди которых оказалось 1999 уникальных. Их выравнивание выполнено с помощью программы Clustal Omega [18] и признано нами приемлемым. Как и ожидалось, основные различия в длине последовательностей были обусловлены наличием вариабельности в сайте нарезания – между большой (HА1) и малой (HА2) субъединицами молекулы НА.


Рис. 2. Филогенетическое дерево гемагглютинина H7, построенное программой RAxML с матрицей замен FLU.
Примечание. Шкала характеризует дату сбора штаммов (от 1902 до 2020 г.).
Fig. 2. The phylogenetic tree for H7 hemagglutinin constructed by the RAxML program with the FLU substitution matrix.
Note. The scale characterizes the date of collection of strains (from 1902 to 2020).

Таблица 3. Взвешенная дистанция Робинсона–Фулдса между филогенетическими деревьями (в процентах)
Table 3. The Robinson–Foulds weighted distance between phylogenetic trees (at percentage)



Примечание. За расстояние между деревьями принимается сумма A + B (где А – количество разбиений первого дерева, которые не при- сутствуют во втором, B – аналогичное количество для второго дерева, которые не присутствуют в первом), отнесённая к общему количеству разбиений и выраженная в процентах (взвешенная дистанция Робинсона–Фулдса). В ячейках таблицы приведены различия в процентах между деревьями, построенными при помощи разных программ.
Note. The distance between the trees is taken as the sum of A + B (where A is the number of partitions of the first tree that are not present in the second, B is the number of partitions of the second tree that are not present in the first) assigned to the total number of partitions and expressed in percent (Robinson–Foulds weighted distance). The table cells show the percentage differences between trees constructed using different programs.

Возбудитель гриппа А с гемагглютинином подтипа Н7 может стать потенциальной причиной будущей пандемии [21]. В этой связи поиск направленных против данного патогена средств, а также компонентов диагностических тест-систем [22][23] для быстрой идентификации и типирования новых изолятов является актуальной задачей как для ветеринарии, так и для общественного здравоохранения. С этой целью в настоящем исследовании разработана панель МКАТ к молекуле НА низкопатогенного ВГ A/mallard/Netherlands/12/2000 (H7N3). Ранее он был выбран в качестве донора НА для создания вируса-реассортанта – вакцинного штамма [24]. В более поздней работе предложены векторные вакцины на основе этого же штамма [25]. Отметим, что A/mallard/Netherlands/12/2000 (H7N3), так же как и A/mallard/Netherlands/2/2000 (H10N7), послужил прототипом высокопатогенного природного реассортанта A/chicken/Netherlands/1/2003 (H7N7), вызвавшего эпизоотию в Европе в начале XX в. Таким образом, выбор возбудителя-иммуногена для получения МКАТ был сделан не случайно.

К сожалению, МКАТ 9E11 и 9G12, обнаружившие связывание в РТГА с вирусом Н15 (эволюционно близким к Н7), нельзя использовать для дифференциальной диагностики и типирования НА в иммунологических тестах. В дальнейшем планируется исследовать их реактогенную способность по отношению к более развёрнутому спектру возбудителей гриппа с различными подтипами НА.

Заключение

Достаточно высокая вируснейтрализующая активность антител 7D11, 7H9 и 9B2 предполагает возможность их перспективного применения в качестве реагентов диагностических тест-систем, профилактических и лечебных средств.

Список литературы

8. Суховецкая В.Ф., Дондурей Е.А., Дриневский В.П., Соминина А.А., Майорова В.Г., Писарева М.М., и др. Методические рекомендации. Выделение вирусов гриппа в клеточных культурах и куриных эмбрионах и их идентификация. Санкт-Петербург; 2006.

14. Кущ А.А., Климова Р.Р., Масалова О.В., Фёдорова Н.Е., Ботиков А.Г., Федякина И.Т., и др. Получение и свойства моноклональных антител к высокопатогенному штамму вируса гриппа птиц A(H5N1), выделенного на территории Российской Федерации. Вопросы вирусологии. 2008; 53(5): 9–14.

15. Климова Р.Р., Масалова О.В., Бурцева Е.И., Чичев Е.В., Леснова Е.И., Оскерко Т.А., и др. Моноклональные антитела к пандемическому вирусу гриппа A/IIV-Moscow/01/2009 (H1N1)swl, обладающие высокой вируснейтрализующей активностью. Вопросы вирусологии. 2011; 56(3): 15–20.

16. Matrosovich M.N., Klenk H.-D., Kawaoka Y. Receptor specificity, host-range, and pathogenicity of influenza viruses. In: Kawaoka Y., ed. Influenza Virology: Current Topics. Wymondham, UK: Caister Academic Press; 2006: 95–138.

25. Боголюбов А.С., Жданова О.В., Кравченко М.В. Справочник по орнитологии. Миграции птиц. М.: Экосистема; 2006.


Новость

Вирионы вируса гриппа штамма H1N1

Автор
Редактор

Возможность предсказывать эволюционную динамику вируса гриппа A чрезвычайно важна для здравоохранения: разработанная в соответствии с предсказаниями вакцина, применяющаяся во время сезонных вспышек заболевания, должна обеспечивать эффективную защиту от этой тяжелой инфекции, чреватой серьезными осложнениями. Аминокислотные замены в двух ключевых белках вируса гриппа A, взаимодействующих с иммунной системой, — нейраминидазе и гемагглютинине — происходят довольно часто и помогают вирусу избегать противодействия иммунной системы хозяина. Ученые из Сколковского института науки и технологий и других российских научно-исследовательских институтов показали, что для частоты таких аминокислотных замен характерна любопытная особенность: чем больше времени прошло с момента возникновения очередного варианта участка белка с антигенными свойствами, тем больше вероятность, что он будет заменен другим вариантом. Результаты этого биоинформатического анализа недавно были опубликованы в журнале PNAS.

Вирус гриппа A очень изменчив и постоянно подстраивается под иммунную систему хозяина с помощью аминокислотных замен в двух поверхностных белках, обладающих свойствами антигенов, — гемагглютинине (HA) и нейраминидазе (NA). Эти два белка уже стали классическими примерами, иллюстрирующими адаптивную эволюцию (рис. 1–3). Названия штаммов вируса гриппа также происходят от вариантов этих белков: так, название H1N1 означает, что вирусные частицы содержат гемагглютинин первого типа и нейраминидазу первого типа.

Вирион вируса гриппа А

Рисунок 1. Общий вид вириона вируса гриппа A в разрезе

Молекула нейраминидазы

Рисунок 2. Молекула нейраминидазы, заякоренная в мембране вириона

Молекула гемаглютинина

Рисунок 3. Молекула гемаглютинина в мембране вириона

В гемагглютинине и нейраминидазе постоянно происходят несинонимичные аминокислотные замены, которые подхватываются или отбраковываются отбором. Но от чего зависит скорость эволюционирования определенных аминокислотных позиций? Как сообщается в недавней статье российских ученых, вышедшей в PNAS, важным фактором является время возникновения новой аллели (варианта гена): чем больший срок прошел с момента ее возникновения, тем выше вероятность появления в ней новых мутаций [1].

Стоит, однако, отметить, что предложенный авторами статьи подход имеет ряд ограничений. В частности, для правильных оценок времени возникновения варианта белка необходимо иметь достоверное филогенетическое дерево и восстановленный предковый вариант белка, что можно получить далеко не всегда. Тем не менее можно надеяться, что разработанный подход поможет улучшить наше понимание эволюционной динамики патогенов и принимать соответствующие меры по предотвращению вспышек и эпидемий, улучшая качество предсказаний при разработке вакцин.

Читайте также: