Изменчивость у бактерии вирусов

Обновлено: 01.05.2024

Генотип - вся совокупность имеющихся у организма генов.

Фенотип - совокупность реализованных (внешних) генетически закрепленных признаков, т.е. индивидуальное проявление генотипа. При изменении условий существования фенотип бактерий может изменяться при сохранении генотипа.

Изменчивость у бактерий может быть фенотипической (ненаследуемой) и генотипической (передаваемой по наследству).

Фенотипической изменчивостью называют временные, ненаследуемые изменения признаков, возникающие в ответ на изменившиеся условия окружающей среды. После устранения причины, вызвавшей изменение признака бактерии возвращаются к исходному фенотипу.

Генотипическая изменчивость подразделяется на мутации и рекомбинации.

Мутации - скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).

Рекомбинации - изменчивость, связанная с переносом генетической информации от одной бактерии (донора) другой (реципиенту). Генетические рекомбинации могут осуществляться путем трансформации, трансдукции или конъюгации.

1.Трансформация – непосредственный захват, поглощение и встраивание в свой геном бактерией реципиентом фрагментов ДНК погибших бактерий из питательной среды.

2.Трансдукция - перенос генетического материала от бактерии донора к бактерии реципиенту умеренными фагами.

3.Конъюгация - перенос генетического материала от донора реципиенту с помощью плазмид.

Плазмиды - внехромосомные молекулы ДНК наделяющие бактерии дополнительными полезными свойствами. Плазмиды могут встраиваться в хромосому бактерий - интегративные плазмиды или находиться в виде отдельной структуры в цитоплазме - автономные плазмиды.

Контрольные вопросы по теме занятия:

1. Структура вирусов.

2. Структура бактериофагов.

3. Вирулентные и умеренные бактериофаги.

4. Взаимодействие фагов с бактериальной клеткой.

5. Фенотипическая изменчивость микроорганизмов.

6. Генотипическая изменчивость микроорганизмов.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А. Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

2. О.К. Поздеев. Медицинская микробиология. М., ГЭОТАР-МЕДИА, 2005.

Занятие 7

ТЕМА ЗАНЯТИЯ: Микробиологические основы химиотерапии инфекционных заболеваний. Сульфаниламиды. Антибиотики. Механизм действия. Побочное действие антибактериальных препаратов на организм. Методы определения чувствительности бактерий к антибиотикам.

УЧЕБНАЯ ЦЕЛЬ ЗАНЯТИЯ: Ознакомиться с микробиологическими основами химиотерапии инфекционных заболеваний. Усвоить понятия “сульфаниламиды” и “антибиотики”. Изучить механизмы действия сульфаниламидов и антибиотиков на микробные клетки. Познакомиться с побочным действием антибактериальных препаратов на организм. Освоить методы определения чувствительности бактерий к антибиотикам.

ЗАДАЧИ ЗАНЯТИЯ:

1. Ознакомиться с микробиологическими основами химиотерапии инфекционных заболеваний.

2. Усвоить понятия “сульфаниламиды” и “антибиотики”.

3. Изучить механизмы действия сульфаниламидов и антибиотиков на микробные клетки.

4. Познакомиться с побочным действием антибактериальных препаратов на организм.

Изменчивость свойственна всем микроорганизмам.

Исследованиями в области генетики была установлена генетическая роль ДНК, расшифрованы структура гена и генетического кода, механизм репликации ДНК и регуляции синтеза белка у прокариотов, выяснены закономерности мутагенеза и репликаций поврежденных участков ДНК.

Изучение наследственности и изменчивости микроорганизмов показало, что изменяться могут любые свойства микробной клетки: резистентность к различным факторам, морфологические, культуральные, биохимические, вирулентные, антигенные, токсигенные и др. (примером тому могут служить вакцины).

Факторы, вызывающие эту изменчивость, разнообразны. К ним относятся состав питательной среды, рН окружающей среды, концентрация минеральных солей, температура, ультрафиолетовые лучи, действие фагов, лекарственных и дезинфицирующих препаратов, различные химические соединения, ультразвук, ионизирующая радиация и многое другое.

Успехи в развитии генетики микроорганизмов показали, что основные законы наследственности и изменчивости одинаковы по своей сути для всех живых организмов и имеют единую материальную основу. Микроорганизмы в силу скорости размножения и гаплоидности являются удобной моделью для изучения закономерностей изменчивости.

Генетические исследования, проводимые в медицинской микробиологии, направлены на разработку методов управления жизнедеятельностью микроорганизмов и получении мутантов, полезных для человека (получение вакцин, продуцентов антибиотиков, аминокислот, кормового белка и пр.).

Материальной основой наследственности, определяющей генетические свойства всех организмов, в том числе бактерий, вирусов, простейших, дейтеромицетов и пр., является ДНК. Исключение составляют только РНК – содержащие вирусы, у которых генетическая информация записана в РНК.

Участок молекулы ДНК, контролирующий синтез одного белка, называется геном.

Гены подразделяются на структурные, несущие информацию о последовательности аминокислотных остатков в конкретных белках, вырабатываемых клеткой, и гены – регуляторы, регулирующие работу структурных генов.

Полный набор генов, которым обладает клетка, называется генотипом.

В процессе изучения изменчивости микроорганизмов была обнаружена особая форма изменчивости – диссоциация. Этот вид изменчивости проявляется в том, что при посеве некоторых культур на плотные питательные среды происходит разделение колоний на два типа: 1) гладкие, круглые, блестящие колонии с ровными краями – S-форма (Smooth – гладкий) и 2) плоские, непрозрачные колонии неправильной формы, с неровными краями – R- форма (Rough – шероховатый).

Существуют также переходные формы: М- формы (слизистые) и N- формы (карликовые).

Колонии, относящиеся к гладкой S- форме, могут при определенных условиях переходить в R- форму и обратно. Однако, переход – R- формы в S- форму происходит труднее.

Болезнетворные бактерии чаще бываю в S- форме. У некоторых болезнетворных бактерий колонии представлены r- формой (возбудители туберкулеза, чумы).

Изменения, возникающие в бактериальных клетках, могут быть ненаследуемые – фенотипическая изменчивость и наследуемые – генотипическая изменчивость.

Фенотипическая изменчивость представлена модификацией – это ответная реакция клетки на неблагоприятные условия ее существования. Модификации могут касаться морфологических, культуральных, биохимических свойств микробов. Морфологическая модификация изменяет форму и величину микробной клетки.

Культуральная модификация обуславливает изменение пигментообразования и размера колоний, скорости деления особей и времени формирования колоний и др.

Биохимическая модификация проявляется в возникновении адаптивных ферментов, позволяющих существовать микробным клеткам в определенных условиях.

Модификация – это способ приспособления микроорганизма к условиям внешней среды. Поскольку приобретенные свойства не передаются по наследству, они только способствуют в основном выживанию микробных популяций.

Например, дифтерийные бактерии сравнительно легко изменяют морфологические, культуральные и биохимические свойства под влиянием физических и химических факторов. Они могут образовывать колбовидные, нитевидные, дрожжеподобные и кокковидные формы, у них утрачивается способность ферментировать углеводы и продуцировать токсины. Однако, при восстановлении оптимальных условий их существования, возникшие изменения утрачиваются.

Генотипическая изменчивость возникает в результате изменений, передающихся по наследству. Генотипическая изменчивость представлена мутациями и рекомбинациями.

Мутации и рекомбинации – это передаваемые по наследству структурные изменения генов.

Мутации возникают в результате влияния внешних факторов (физических и химических). Мутации подразделяются на крупные мутации, обусловленные изменениями во всей хромосоме, и мелкие (точечные) мутации, возникающих в результате изменений отдельных нуклеотидов ДНК.

Мутации возникают в результате выпадения или добавления отдельных оснований ДНК, замены одного основания другим или смещения относительно оси симметрии.

Микробные мутации делят на спонтанные и индуцированные.

В результате мутаций могут изменяться морфологические и культуральные свойства, возникать устойчивость к лекарственным препаратам, снижаться вирулентные свойства, утрачиваться способность синтезировать аминокислоты, утилизировать углеводы и другие питательные вещества.

Если мутации возникают под воздействием внешних факторов на генную структуру, то рекомбинационная изменчивость возникает в результате влияния ДНК донора на клетку реципиента.

Рекомбинация бывает трех видов:
1. Трансформация, которая возникает в результате способности клетки-реципиента вступить непосредственно в контакт с ДНК донора.
2. Трансдукция, которая обусловлена переносом генетической информации от донора к реципиенту при помощи умеренного фага. С помощью умеренного фага клетке – реципиенту можно передать способность продуцировать токсин, образовывать споры, продуцировать дополнительные ферменты и др.
Дифтерийные бактерии типа mitis в результате трансдукции, обусловленной бактериофагом, могут приобрести новые свойства, в результате которых становятся более токсигенными, а следовательно, и более вирулентными.
3. Конъюгация – передача генетического материала от клетки – донора к клетке – реципиенту при непосредственном контакте особей друг с другом.

Кроме хромосомных факторов наследственности существуют и внехромосомные.

Это плазмиды – сравнительно небольшие внехромосомные молекулы ДНК микробной клетки. Они расположены в цитоплазме и имеют кольцевую структуру. Плазмиды обеспечивают устойчивость бактерий к лекарственным веществам, в том числе и к антибиотикам.

По генетическим механизмам лекарственная резистентность микробов может быть первичной или приобретенной.

Первичная (естественная) устойчивость обусловлена отсутствием соответствующих метаболических реакций, которые блокировались бы определенными препаратами.

Приобретенная устойчивость возникает в результате мутаций в хромосомных генах, контролирующих синтез компонентов клеточной стенки, цитоплазматической мембраны, рибосомных или транспортных белков.

Чаще всего приобретенная устойчивость возникает в результате переноса внехромосомного фактора – плазмиды, которая контролирует множественную устойчивость микробных клеток (бактерий) к двум, трем и более лекарственным препаратам, в том числе и к антибиотикам. Возникает полирезистентность и даже зависимость от того или иного лекарственного препарата (антибиотика).

Внехромосомные факторы передаются клеткам с очень высокой частотой и обуславливают широкое распространение микробов и большую их выживаемость в окружающей среде.

Биохимические механизмы плазмидной резистентности связаны с образованием ферментов, инактивирующих антибиотики или модифицирующих антибиотики или транспортные белки, переносящие антибиотики в клетку.

Перенос плазмиды от одних бактерий к другим осуществляется путем трансдукции или конъюгации.

Устойчивость к антибиотикам эукариотов – грибов и простейших – также возникает в результате мутаций в хромосомных генах, контролирующих образование структурных компонентов клетки.

Механизмы формирования антибиотикорезистентности микроорганизмов сложны и многообразны.

Они зависят от особенностей механизма действия антибиотиков или химиопрепаратов на чувствительные клетки, от метаболических свойств микробов, а также от хромосомной или плазмидной локализации маркеров резистентности.

Наряду с подавлением процессов жизнедеятельности микробных клеток, антибиотики, как и другие химиотерапевтические препараты, являются мощными селективными агентами, способствующими отбору и размножению резистентных к ним особей. Даже если в чувствительной к антибиотику или химиотерапевтическому препарату бактериальной популяции содержится только одна резистентная клетка, она в присутствии данного вещества в течение очень короткого времени может стать родоначальницей новой популяции резистентных микроорганизмов.

Массовой селекции и распространению антибиотикорезистентых микробных популяций способствуют многие факторы. Например, широкое и часто неконтролируемое применение антибиотиков для лечения и особенно для профилактики различных заболеваний без достаточно на то оснований (в том числе и при вирусных заболеваниях), а также широкое применение антибиотиков в ветеринарии в качестве добавок к кормам для ускорения роста животных, использование антибиотиков в качестве консервантов пищевых продуктов, для профилактики различных заболеваний у животных.

Генетика изучает и разрабатывает пути изменения известных наследственных свойств организма, закрепленных в генетическом коде, изменяет их путем воздействия на генетический аппарат различными факторами (ультрафиолетовыми лучами, химическими соединениями, температурой и пр.).

В результате этого возникают мутанты – культуры с измененным генотипом, обладающие более или менее активными по определенному признаку свойствами.

Ферменты разных видов грибов широко используются в генной инженерии. Современная генетика, пользующаяся методами молекулярной биологии и новейшими физико – химическими методами, показала возможность получения новых штаммов организмов, с измененной специфической активностью. Это стало возможным благодаря картированию генов на молекуле ДНК, т.е изучению их расположения в полимерной цепи ДНК и функциональных их свойств. Физико – химические методы позволяют с помощью существующих специфических ферментов выделять отдельные гены или их участки и соединять их с определенной частью молекулы ДНК другой особи. В результате этого полученные искусственно жизнеспособные клетки имеют измененную генетическую информацию.

Этот метод конструирования генетических свойств организма носит название генной инженерии.

Развитие генетической и клеточной инженерии позволяет целенаправленно получать ранее недоступные препараты (инсулин, интерферон, вакцины и пр.), создавать новые полезные штамм микроорганизмов (более активные продуценты различных необходимых метаболитов), сорта растений, породы животных.

Различают два вида изменчивости – фенотипическую и генотипическую.

Фенотипическая изменчивость – модификации – не затрагивает генотип. Модификации затрагивают большинство особей в популяции. Они не передаются по наследству и с течением времени затухают, т. е. возвращаются к исходному фенотипу.

Генотипическая изменчивость затрагивает генотип. В основе ее лежат мутации и рекомбинации.

Мутации – изменение генотипа, сохраняющееся в ряду поколений и сопровождающееся изменением фенотипа. Особенностями мутаций у бактерий является относительная легкость их выявления.

По локализации различают мутации:

1) генные (точечные);

По происхождению мутации могут быть:

1) спонтанными (мутаген неизвестен);

2) индуцированными (мутаген неизвестен).

Рекомбинации – это обмен генетическим материалом между двумя особями с появлением рекомбинантных особей с измененным генотипом.

У бактерий существует несколько механизмов рекомбинации:

2) слияние протопластов;

Конъюгация – обмен генетической информацией при непосредственном контакте донора и реципиента. Наиболее высокая частота передачи у плазмид, при этом плазмиды могут иметь разных хозяев. После образования между донором и реципиентом конъюгационного мостика одна нить ДНК-донора поступает по нему в клетку-реципиент. Чем дольше этот контакт, тем большая часть донорской ДНК может быть передана реципиенту.

Слияние протопластов – механизм обмена генетической информацией при непосредственном контакте участков цитоплазматической мембраны у бактерий, лишенных клеточной стенки.

Трансформация – передача генетической информации в виде изолированных фрагментов ДНК при нахождении реципиентной клетки в среде, содержащей ДНК-донора. Для трансдукции необходимо особое физиологическое состояние клетки-реципиента – компетентность. Это состояние присуще активно делящимся клеткам, в которых идут процессы репликации собственных нуклеиновых кислот. В таких клетках действует фактор компетенции – это белок, который вызывает повышение проницаемости клеточной стенки и цитоплазматической мембраны, поэтому фрагмент ДНК может проникать в такую клетку.

Трансдукция – это передача генетической информации между бактериальными клетками с помощью умеренных трансдуцирующих фагов. Трансдуцирующие фаги могут переносить один ген или более.

1) специфической (переносится всегда один и тот же ген, трансдуцирующий фаг всегда располагается в одном и том же месте);

2) неспецифической (передаются разные гены, локализация трансдуцирующего фага непостоянна).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Географическое распространение и изменчивость

Географическое распространение и изменчивость Большинству известно, что колибри водятся только в Америке; менее известно, что они – почти исключительно тропические птицы и что те немногие виды, которые попадаются в умеренных (северных и южных) широтах материка,

7. Виды метаболизма бактерий

7. Виды метаболизма бактерий В процессе метаболизма выделяют два вида обмена:1) пластический (конструктивный):а) анаболизм (с затратами энергии);б) катаболизм (с выделением энергии);2) энергетический обмен (протекает в дыхательных

3. Дополнительные органеллы бактерий

3. Дополнительные органеллы бактерий Ворсинки (пили, фимбрии) – это тонкие белковые выросты на поверхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезию бактерий на поверхности клеток макроорганизма. Они

ЛЕКЦИЯ № 3. Физиология бактерий

ЛЕКЦИЯ № 3. Физиология бактерий 1. Рост и размножение бактерий Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии

1. Рост и размножение бактерий

1. Рост и размножение бактерий Рост бактерий – увеличение бактериальной клетки в размерах без увеличения числа особей в популяции.Размножение бактерий – процесс, обеспечивающий увеличение числа особей в популяции. Бактерии характеризуются высокой скоростью

2. Питание бактерий

2. Питание бактерий Под питанием понимают процессы поступления и выведения питательных веществ в клетку и из клетки. Питание в первую очередь обеспечивает размножение и метаболизм клетки.Среди необходимых питательных веществ выделяют органогены – это восемь

Изменчивость.

Изменчивость. Прежде чем применить выработанные в предыдущей главе общие основания к органическим существам в природе, мы должны вкратце обсудить, подвержены ли последние какой-либо вариации. Для надлежащего изложения этой темы потребовалось бы привести длинный

Рояль в кустах, или Скрытая изменчивость

Рояль в кустах, или Скрытая изменчивость Одно из фундаментальных свойств живых существ — помехоустойчивость. Многие случайные помехи (как внутренние — мутации, так и внешние — колебания условий среды) тем или иным способом компенсируются и не приводят к изменению

Глава 5. Изменчивость

Глава 5. Изменчивость Храбреца не разыгрывай перед судьбой, Каждый миг она может покончить с тобой. Твой доверчивый рот, услаждая халвою, Что ей стоит подсыпать отравы любой? Омар Хайям (1048–1123), персидский философ и поэт Всем живым организмам свойственна изменчивость,

Изменчивость

Изменчивость Всем живым организмам свойственна изменчивость, под которой понимают свойство приобретать новые признаки. В природе встречаются различные виды изменчивости.Модификационная изменчивость – это изменения фенотипа под действием факторов внешней среды в

Генетическая изменчивость мужских особей

Тема 5. Изменчивость

Тема 5. Изменчивость Победа какого-нибудь научного взгляда и включение его в мировоззрение не доказывает еще его истинности… Истина нередко в большем объеме открыта научным еретикам, чем ортодоксальным представителям научной мысли. В. И. Вернадский (1863–1945), русский

30. Изменчивость: наследственная и ненаследственная

30. Изменчивость: наследственная и ненаследственная Вспомните!Какие виды изменчивости вам известны?Приведите примеры признаков, изменяющихся под воздействием внешней среды.Что такое мутации?Изменчивость – одно из важнейших свойств живого, способность живых

6. Наследственность и ее изменчивость

6. Наследственность и ее изменчивость Наследственность — это одно из важнейших свойств организмов, которое не присуще телам неживой природы.Под наследственностью часто понимают способность передачи родителями своих свойств потомству.Но это очень узкое и ограниченное

Вирусы и механизмы возникновения их мутаций

Вирусология занимает важное место среди биологических дисциплин. Современный медицинский или ветеринарный специалист должен знать не только клинико–патологическую сторону заболевания, но и иметь четкое представление о вирусах, их свойствах, методах лабораторной диагностики и свойствах постинфекционного и поствакцинального иммунитета.


Вирус (от лат. virus — яд) является простейшей неклеточной формой жизни в виде микроскопической биологической частицы, представляющей собой молекулы нуклеиновых кислот (ДНК или РНК), заключённых в защитную белковую оболочку (капсид) и способные инфицировать живые организма.

  1. мутации, то есть изменении последовательности нуклеотидов в определенной области генома вируса, что приводит к фенотипически выраженному изменению свойства;
  2. рекомбинации, то есть обменом генетическим материалом между двумя вирусами, близкими, но различными по наследственным свойствам.

Мутации у вирусов

  • спонтанные;
  • индуцированные (вызванные).

Но точечные мутации не всегда приводят к изменению фенотипа. Существует целый ряд причин, по которым такие мутации не могут проявляться. Одна из них - вырождение генетического кода. Код синтеза белка вырождается, что означает, что некоторые аминокислоты могут быть закодированы несколькими триплетами (кодонами). Например, аминокислота лейцин может быть закодирована шестью триплетами. Поэтому, если молекула РНК заменяет триплет ЦУУ на ЦУЦ, ЦУА на ЦУГ, то синтезированная молекула белка все еще будет содержать аминокислоту лейцин.

Поэтому ни структура белка, ни его биологические свойства не нарушаются. Природа использует своего рода синонимичный язык и, заменяя один кодон другим, закладывает в них одно и то же понятие (аминокислоту), тем самым сохраняя естественную структуру и функцию синтезируемого белка.


Другое дело, если аминокислота кодируется только одним триплетом, например, синтез триптофана кодируется и заменяется только триплетом УГГ, то есть синонимом, который отсутствует. В этом случае в белок включается еще одна какаялибо аминокислота, которая может привести к появлению мутантного признака.

Аберрация в фагах вызвана делециями (потерями) различного числа нуклеотидов, от одной пары до последовательности, вызывающей одну или несколько функций вируса. Как спонтанные, так и индуцированные мутации также делятся на прямые и обратные мутации. Мутации могут иметь разные последствия. В некоторых случаях они приводят к изменению фенотипических проявлений в нормальных условиях.


Например, увеличивается или уменьшается размер бляшек под агарным покрытием; увеличивается или ослабевает вирулентность для определенного вида животных; вирус становится более чувствительным к действию химиотерапевтического агента и т. д.

В других случаях мутация является фатальной, поскольку она нарушает синтез или функцию жизненно важного вирусного белка, например, такого как вирусная полимераза. В некоторых случаях мутации являются условно летальными, так как вирусспецифический белок сохраняет свои функции при определенных условиях и теряет эту способность в неразрешающих (непермиссивных) условиях.

Типичным примером таких мутаций являются термочувствительные – ТS-мутации, при которых вирус теряет способность к размножению при повышенных температурах (+39-42°С), сохраняя эту способность при нормальных температурах роста (+36-37°С). Морфологические или структурные мутации могут влиять на размер вириона, первичную структуру вирусных белков и изменения в генах, определяющих ранние и поздние вирусные ферменты, обеспечивающие размножение вируса. Мутации также могут быть различными по своему механизму.

В одних случаях происходит делеция, то есть потеря одного или нескольких нуклеотидов, в других - встраивание одного или нескольких нуклеотидов, а в некоторых случаях один нуклеотид заменяется другим. Мутации могут быть прямыми или обратными. Прямые мутации меняют фенотип, а обратные мутации – реверсии) - восстанавливаются. Реальная реверсия возможна, когда обратная мутация происходит вместе с первичным повреждением, и псевдореверсия, когда мутация происходит в другой области дефектного гена (интрагенное торможение мутации) или в другом гене (экстрагенное подавление мутации).

Реверсия - не редкое явление, потому что ревертанты обычно лучше приспособлены к данной клеточной системе. Поэтому при создании мутантов с определенными свой ствами, например, вакцинных штаммов, следует ожидать возможного превращения их в дикий тип. Вирусы отличаются не только своими небольшими размерами, селективной способностью к размножению в живых клетках, особенностями строения наследственного вещества, но и значительной изменчивостью от других представителей живого мира.

Изменения могут влиять на размер, форму, патогенность, антигенную структуру, тканевую тропность, устойчивость к физико-химическим воздействиям и на другие свойства вирусов. Значение причин, механизмов и характера изменений имеет большое значение при получении необходимых вакцин для вирусных штаммов, а также для разработки эффективных мер борьбы с вирусными эпизодами, в ходе которых, как известно, свойства вирусов могут существенно изменяться.

Мутация вирусов может происходить в результате химических изменений цистронов или нарушения последовательности их расположения в структуре молекулы вирусной нуклеиновой кислоты. В зависимости от условий различают естественную изменчивость вирусов, наблюдаемую в нормальных условиях размножения, и искусственную изменчивость, получаемую в результате многочисленных специальных пассажей или воздействия на вирусы определенных физических или химических факторов (мутагенов). В обычных природных условиях изменчивость проявляется не во всех вирусах одинаково.

Этот признак наиболее заметен у вируса гриппа и вирус ящера. Значительная изменчивость отмечается у вируса гриппа. Об этом свидетельствует большое количество вариантов у разных типов этих вирусов, а также значительные изменения его антигенных свойств в конце почти каждой эпизоотии.

Частота мутаций и механизмы их возникновения

Мутации бактериофагов изучались очень интенсивно не только с целью генетического анализа, но и с целью получения информации о свойствах самих фагов. Частота появления мутантов в потомстве фагов варьируется очень сильно: например, одни мутанты образуются с частотой не более 10, а другие-с частотой 10 и выше. Неблагоприятное воздействие высокочастотных мутаций обычно компенсируется эффектом отбора. Например, мутантный фаг может быть заменен диким типом, что дает более высокий выход фага. Высокая частота вспышек обычно характерна для таких мутаций, которые могут происходить как во многих локусах, так в одном и том же локусе.

В тех случаях, когда нормальный признак соответствует функциональной форме гена, а мутант появляется в результате изменения в любой точке локуса, частота прямых мутаций окажется выше, чем частота обратных мутаций, так как обратные мутации должны приводить к восстановлению нормального состояния. Иногда ревертанты на самом деле являются псевдоревертантами: это происходит либо из-за изменений в другом гене (мутации-супрессоры), либо из-за изменений в том же гене, которые вызывают другую, но также активную форму продукта.

У зрелых фагов частота спонтанных мутаций очень мала, но они могут быть индуцированы под влиянием таких мутагенных факторов, как рентгеновские или ультрафиолетовые лучи, азотистая кислота, гидроксиламин или алкилирующие агенты. Азотистая кислота дезаминирует основания нуклеотидов, а этилметилсульфат их этилирует. Гидроксиламин превращает шитозин в урацил. В результате ошибок, допущенных при репликации химически модифицированной нуклеиновой кислоты, происходят мутации, и потомство фагов, полученное из бактерии, содержит как нормальные, так и мутантные частицы. Однако, как и при обработке мутагенного фага, содержащего одноцепочную ДНК, образуется чистый мутантный клон.

Изучение мутационного процесса, происходящего при размножении фагов, непосредственно связано с анализом развития фагов. Давайте рассмотрим процесс спонтанной мутации. В бактериальной клетке, в которой произошла мутация фага, 6 образуются как нормальный, так и мутировавший фаги. Количество мутантных фаговых частиц, содержащихся в популяции фагов, происходящих из этой отдельной бактериальной клетки, очевидно, определяется характером размножения фагов, поскольку новые гены могут быть сформированы только путем репликации уже существующих. Если вероятность мутации одинакова для каждой репликации, то число мутантов зависит от механизма репликации.

Например, если каждая новая копия гена формируется независимо от других, то распределение мутантных копий в потомках фагов от разных инфицированных бактерий будет случайным. Если же, наоборот, каждая из полученных копий воспроизводится, то в свою очередь мутантные копии будут разделены на группы или клоны, состоящие из мутантных "сибсов".

Индуцированные хозяином модификации бактериофагов

Помимо мутаций, бактериофаги подвержены негенетическим изменениям, в которых главная роль принадлежит клетке-хозяину. Это явление было названо модификациями, вызванными хозяином. Значение этих модификаций для молекулярной биологии состоит в том, что они показали способность внутриклеточной среды вызывать такие изменения в химической структуре генетического материала, которые могут быть использованы для идентификации клеточных линий, синтезирующих ДНК.

Подобные явления были впервые обнаружены на фаговой ДНК, но они также справедливы и для каждой бактериальной клеточной ДНК. Есть также наблюдения, при которых это явление относится и к эукариотическим клеткам. В особых случаях могут возникнуть более сложные ситуации. Двустороннее ограничение фага двумя хозяевами иногда наблюдается, но оно не обязательно. Фаги, отторгнутые клетками, способны адсорбироваться на них и проникать в их ДНК добавляя часть собственной ДНК. Однако последняя часть быстро разрушается, и репликация не происходит.

Деградация ДНК вызывается специфическими эндонуклеазами (рестриктазами или R-нуклеазами), которые могут обнаруживать и расщеплять определенные участки ДНК, если они не были модифицированы под влиянием М-ферментов. После этого ДНК расщепляется экзонуклеазами на отдельные нуклеотиды. Бактериальный штамм может иметь одну или несколько R-нуклеаз и в то же время M-ферменты, которые защищают собственную ДНК клетки. Предложена удобная номенклатура этих ферментов. Согласно ряду данных, области детекции R-нуклеазы не всегда совпадают с областями расщепления ДНК; возможно, что фермент может мигрировать по цепочке до того, как найдет область, где происходит расщепление ДНК. Функциональная роль индуцированных хозяином модификаций неясна.

Как видим, мутирование вирусов проходит достаточно сложный и тернистый путь в приобретении новых вирулентных свойств. Эти свойства могут быть как ослабляющими для развития инфекционного процесса, так и крайне агрессивными в своём новом виде.

Генотип - вся совокупность имеющихся у организма генов.

Фенотип - совокупность реализованных (внешних) генетически закрепленных признаков, т.е. индивидуальное проявление генотипа. При изменении условий существования фенотип бактерий может изменяться при сохранении генотипа.

Изменчивость у бактерий может быть фенотипической (ненаследуемой) и генотипической (передаваемой по наследству).

Фенотипической изменчивостью называют временные, ненаследуемые изменения признаков, возникающие в ответ на изменившиеся условия окружающей среды. После устранения причины, вызвавшей изменение признака бактерии возвращаются к исходному фенотипу.

Генотипическая изменчивость подразделяется на мутации и рекомбинации.

Мутации - скачкообразные изменения наследственного признака. Могут быть спонтанные и индуцированные, генные (изменения одного гена) и хромосомные (изменения двух или более двух участков хромосомы).

Рекомбинации - изменчивость, связанная с переносом генетической информации от одной бактерии (донора) другой (реципиенту). Генетические рекомбинации могут осуществляться путем трансформации, трансдукции или конъюгации.

1.Трансформация – непосредственный захват, поглощение и встраивание в свой геном бактерией реципиентом фрагментов ДНК погибших бактерий из питательной среды.

2.Трансдукция - перенос генетического материала от бактерии донора к бактерии реципиенту умеренными фагами.

3.Конъюгация - перенос генетического материала от донора реципиенту с помощью плазмид.

Плазмиды - внехромосомные молекулы ДНК наделяющие бактерии дополнительными полезными свойствами. Плазмиды могут встраиваться в хромосому бактерий - интегративные плазмиды или находиться в виде отдельной структуры в цитоплазме - автономные плазмиды.

Контрольные вопросы по теме занятия:

1. Структура вирусов.

2. Структура бактериофагов.

3. Вирулентные и умеренные бактериофаги.

4. Взаимодействие фагов с бактериальной клеткой.

5. Фенотипическая изменчивость микроорганизмов.

6. Генотипическая изменчивость микроорганизмов.

Литература для подготовки к занятию:

Основная литература:

1. Медицинская микробиология, вирусология и иммунология. Под ред. А.А. Воробьева. М., 2004.

Дополнительная литература:

1. Л.Б. Борисов. Медицинская микробиология, вирусология, иммунология. М., 2002.

Читайте также: