Как называются самые крупные вирусы

Обновлено: 25.04.2024

Когда-то давно одна из веток в популяции гоминид, все больше отделяясь, стала постепенно обретать морфологию и образ жизни человека нынешнего, – так сказать, разумного. Но история вирусов началась задолго до нашей. Задолго до того, как наш мозг развился к способности задавать вопросы. И задолго до того, как мы стали сначала догадываться, а потом и понимать, – от чего, собственно, болеем и умираем. Сегодня на одной планете с нами живет неисчислимое количество вирусов; по некоторым оценкам, их здесь сформировалось более ста миллионов разновидностей (представляете себе, например, сто миллионов человеческих рас?), и если каким-то чудом пересчитать все вирусы поштучно, то численность этой популяции значительно превзойдет состав всех прочих популяций, вместе взятых, включая даже бактерии и насекомых. Вирусы фантастически разнообразны во всех аспектах своего существования, особенно в размерах, форме и предпочтениях. А мы до сих пор не решили даже, можно ли их считать живыми.

Любое живое существо на Земле, – во всей биомассе от бактерий и простейших до слона и баобаба, – заражается теми или иными вирусами. Некоторые вирусы колонизируют представителей какого-то одного вида, другие не столь привередливы. К человеку абсолютное большинство из них относится нейтрально. Но все они, – внутриклеточные паразиты, которые перестраивают геном зараженной клетки на свой лад, на репликацию все новых и новых своих копий. Активно существовать и размножаться вне живой клетки вирусы не могут. Пассивное же их существование и, вообще, этот странный вирусный мир, где даже гравитация работает как-то не так, нам представить довольно сложно.

В целом, при заражении наша судьба зависит от общего состояния здоровья и актуального иммунного статуса, от инфицирующей дозы (численность попавшей в организм колонии) и поведения самого вируса. Клетки-то не просто инфицируются; какое-то время они работают как фабрика вирусов, а при разрушении мембраны неизбежно погибают, и если это происходит в массовом порядке, да в жизненно важном органе, который не восстанавливается…

Для Homo sapiens’а, который привык считать себя центром мироздания и венцом творения, Великая вирусная война как-то… оскорбительна, что ли. Действительно, в ней ведь нет ничего личного. Вообще ничего. Враг попросту не знает о том, что он – враг, что существуем такие себе высокоразвитые мы, что нам не нравится болеть и умирать. Когда на человека нападал опасный хищник-людоед (например, другой Homo sapiens), это всегда была какая-то схватка, какая-то ярость, хоть какие-то шансы. А этого врага даже не увидишь в лицо, потому что лица у него нет. Ему нечем и незачем нас ненавидеть, нечем о нас знать и думать, нечем испытывать к нам аппетит. Его и самого-то, врага этого, практически нет, настолько он мал. Наш организм для него – нечто вроде Галактики, с которой из-за разности в масштабах невозможно пребывать в каких-то личных отношениях. Мы – просто мир обитания, место и способ существования. Вот они и существуют в своем измерении, пока им существуется. Кстати говоря: когда мы своими бензопилами, заводами и фабриками, потребностями и отходами уничтожаем породившую нас природу, – мы ведь делаем это не потому, что мы плохие, ненавидим свою планету и целенаправленно торопимся довести ее до нежилого состояния. Вовсе нет. Просто вот такой у нас получается course of events, как сказал бы англичанин. Такой ход событий, курс нашего (паразитического, выходит?!) развития. И, кстати, не случайно мы в последние годы все чаще сравниваем с вирусами самих себя, – в пересчете на масштабы, конечно. Сравнив, неприятно удивляемся: а и правда, много ведь общего. Только мы, пожалуй, поагрессивней будем, подеструктивней, покатастрофичней для своей экосистемы в целом. И природа, возможно, пытается сдерживать нас с помощью мелких и мельчайших, – есть и такая теория. Именно сдерживать. Если бы от нас по-настоящему хотели избавиться, уже давно избавились бы, так что полное вымирание нам, видимо, не грозит, – во всяком случае, вымирание от инфекционных болезней. Это по отдельности мы теперь стали нежны и уязвимы, а как вид мы остаемся очень цепкими, живучими, плодовитыми и настырными. Даже теряя сотни миллионов, быстро восстанавливаемся в миллиардах. К тому же известно, что ни один паразит не заинтересован в том, чтобы уничтожить своих хозяев как вид, вывести его вчистую. Даже если этот вид опасен для всех.

А кто из них по-настоящему опасен для нас?

Вакцины уже есть, но никаких ощутимых результатов пока нет, да и вообще не очень понятно, как там у нас обстоят дела с иммунитетом к коронавирусу.

В целом, пока совсем не похоже, что пандемия идет (или пойдет в ближайшем будущем) на спад. Более вероятным представляется дальнейшее развитие.

Учитывая все вышесказанное, наверное, лучше бы нам понимать, с чем мы имеем дело.

Далее – о двенадцати самых опасных для человека вирусах (по версии экспертов ресурса Live Science).

Марбургский вирус

Вирус Эбола

Широко известный вирус, вызывающий геморрагическую лихорадку. Ее клинические проявления и пути распространения в целом подобны описанным выше; сам вирус также имеет генетическую структуру, аналогичную Марбургскому вирусу, однако представляет собой отдельный серотип (т.е. вызывает несколько отличный иммунный отклик). По состоянию на 2018 год было известно шесть видов эболавируса, каждый из которых имеет собственную специфику. Наиболее опасным является заирский штамм; эпоним Эбола – название реки в Заире (ныне Демократическая республика Конго), где этот вид впервые был идентифицирован.

Вирус бешенства

Вирус иммунодефицита человека

Заболевание, известное сегодня во всем мире как AIDS (СПИД, синдром приобретенного иммунодефицита), появилось и стало объектом исследований с начала 1980 годов, – сначала на выборках гомосексуалистов и инъекционных наркоманов, затем в других категориях населения (в частности, у пациентов, получавших переливание препаратов крови). Инфекционная этиология предполагалась с самого начала; в 1985 году возбудитель был выделен и идентифицирован как ВИЧ, вирус иммунодефицита человека. ВИЧ относится к семейству ретровирусов, отличается продолжительным инкубационным периодом и, как следует из названия, приводит к постепенному ослаблению иммунной системы. СПИД – это терминальная стадия ВИЧ-инфекции, когда организм становится абсолютно беззащитным перед любыми, в том числе условными патогенами, – как внешними, так и внутренними (например, раковыми клетками).

Современные молекулярно-генетические исследования свидетельствуют о том, что правирус иммунодефицита появился в животном мире Африки сто с небольшим лет назад, и, неоднократно мутировав, за несколько десятилетий эволюции обрел способность инфицировать и вызывать заболевание у человека. Быстрому распространению вируса сначала в африканских странах, а затем и по всему миру, способствовал ряд социально-экономических факторов. По оценкам ВОЗ, с момента идентификации ВИЧ-СПИД различные типы и подтипы вируса унесли жизни более чем 32 миллионов человек, что является наибольшими потерями от инфекционных болезней на современном этапе. До 95% новых случаев заражения приходится на беднейшие страны; более двух третей всех инфицированных проживает в Африканском регионе ВОЗ (каждый двадцать пятый взрослый там является, как минимум, носителем).

Вирус оспы

Вирус характеризуется… вернее, характеризовался, поскольку натуральная оспа теперь уже относится к побежденным болезням: естественного вируса оспы в природе не существует. Он характеризовался очень высокой контагиозностью (заразностью), вирулентностью (способностью вызывать заболевание у носителя) и летальностью, – что в совокупности делало оспу одной из опаснейших инфекционных болезней в истории человечества. Эволюция вируса Variola насчитывает десятки тысяч лет, но способность инфицировать человека, как считают современные исследователи, у вируса развилась не ранее, чем две тысячи лет назад; произошло это, видимо, на Ближнем Востоке или в Северной Африке. В начале нашей эры от эпидемий черной оспы страдала, прежде всего, Европа и Азия (Китай, Корея, Индия, Япония), где у выживших вырабатывался устойчивый иммунитет. В тех регионах, куда вирус был занесен позднее, эпидемии носили катастрофический характер: например, 90% коренного населения Америки было уничтожено не мушкетами и винчестерами, а вирусом оспы, и затем уже другими инфекциями, вирусными и бактериальными.

Оспа побеждена, теперь это лишь история, и мы очень надеемся, что никто и никогда из землян уже не будет инфицирован этим вирусом.

Тем не менее, продолжаются работы по созданию противооспенных вакцин; совсем недавно появился даже этиотропный препарат. Уместно повторить: никогда и ни в чем нельзя быть уверенным до конца (даже в высшей защите, которая была и в Ухане), если речь идет о вирусах. К сожалению, есть все основания опасаться, – особенно в нашем неспокойном мире с его терроризмом и ползучими идеями о биологическом оружии. Попади вирус оспы в беспечные, алчные или, хуже того, в недобрые руки (особенно если эти руки окажутся еще и умелыми по части генетической модификации) – и последствия будут… в общем, лучше не думать. С другой стороны, а как об этом не думать, если в 2014 году в одном из американских Национальных институтов здоровья кто-то из сотрудников в очередной раз открыл никем не охраняемый лабораторный холодильник, вдруг заинтересовался давно и невостребованно стоящей пробиркой, вынул ее (слава богу, со всеми необходимыми предосторожностями) – и вот, пожалуйста: пробирочка с черной оспой, забытая, как потом оказалось, еще в 50-е годы. А этот вирус, в отличие от многих других, очень устойчив, и за все шестьдесят лет он так и не утратил жизнеспособность.

Этот образец уничтожен. Но действительно ли он был последним?

Хантавирус

Вирус изолирован и описан Хо Вангом Ли в 1976 году. В дальнейшем было выделено множество разновидностей хантавируса, которые условно можно разделить на две крупные группы – евразийскую и американскую.

Первая группа, широко распространенная в Азии и Европе (в том числе в 61 субъекте Российской Федерации по обе стороны от Урала), при инфицировании человека вызывает ГЛПС, геморрагическую лихорадку с почечным синдромом. Это наиболее частая из всех острых природно-очаговых инфекций. Протекает с высокой температурой, кровотечениями, серьезным поражением почек и рядом тяжелых сопутствующих дисфункций в различных системах организма. Летальность выше в азиатских регионах (до 10-12%).

Все хантавирусы переносятся грызунами и, реже, рукокрылыми. Человек инфицируется при вдыхании, попадании с пищей или при прямом контакте с продуктами жизнедеятельности либо иным биоматериалом зараженного грызуна. Передача от человека к человеку зафиксирована лишь в единичных случаях в Южной Америке.

Этиотропные средства на данном этапе находятся в стадии разработки, вакцины – в стадии клинических испытаний и внедрения. Лечение на сегодняшний день всегда паллиативное, сугубо симптоматическое. Эпидемиологические данные по хантавирусным инфекциям постоянно отслеживаются и уточняются соответствующими службами.

Вирус гриппа

Но даже в те годы, когда сезонная эпидемия гриппа вызывается не самым агрессивным штаммом, она протекает тяжело у нескольких миллионов человек и уносит от 300 до 500 тысяч жизней. Это при летальности менее одного процента для гриппа А. Грипп В более смертоносен, но он реже приобретает размах эпидемий и пандемий.

Первые упоминания или описания похожих на грипп болезней, явно инфекционных и явно респираторных, встречаются еще до нашей эры, – у Гиппократа, например. Первым достоверным описанием пандемии принято считать источник ХVI века.

Клиническая картина неспецифична и, в принципе, одинакова для всех ОРВИ. Точный диагноз может быть установлен только лабораторно, с помощью серологического анализа или полимеразной цепной реакции, однако в абсолютном большинстве случаев сезонный грипп диагностируют клинически, с учетом актуальной эпидемиологической обстановки в регионе.

Заболевание разрешается в течение 7-10 дней и, как правило, не требует госпитализации. Лечение до сих пор было сугубо паллиативным и/или косвенным, иммуностимулирующим, хотя в последние годы сообщалось о создании нескольких эффективных этиотропных противогриппозных препаратов.

Основное средство профилактики и сдерживания эпидемий гриппа – вакцинация, поскольку иммунитет является стойким и достаточно надежным. Основной путь передачи инфекции, как и у всех ОРВИ, – воздушно-капельный.

Однако грипп – это все-таки вирусная инфекция, а вирусы, повторим вновь и вновь, опасны своей непредсказуемостью и своими осложнениями.

К гриппу это относится, пожалуй, в самой полной мере. Вирусы Influenzaviridae, особенно тип А, чрезвычайно изменчивы, они постоянно ищут и находят способы обходить иммунитет (в том числе созданный вакциной для прошлогодних штаммов), поэтому нередко мутации оказываются весьма опасными.

Что касается осложнений, то наиболее тяжелые из них развиваются со стороны легких, печени, сердца, периферической и центральной нервной системы. Наибольшая летальность наблюдается в самой младшей и самой старшей возрастных категориях, когда иммунная система либо еще недостаточно сформирована, либо уже ослаблена.

Вирус денге

Вирус денге может колонизировать организм приматов (включая человека) и летучих мышей, а главным фактором трансмиссии служат кровососущие комары Aedes, выступающие также переносчиками многих других инфекционных заболеваний. Поэтому в эндемичных по денге странах борьба с размножением комаров является одной из важнейших государственных задач.

Тяжелый вариант денге протекает в форме геморрагической лихорадки, чаще встречается у многократно инфицированных жителей регионов, наиболее неблагополучных в эпидемиологическом плане.

Летальность при типичной форме лихорадки денге – порядка 2-2.5%, но геморрагическая форма убивает до половины заболевших. Ежегодная заболеваемость составляет 50-500 миллионов новых случаев, до полумиллиона больных госпитализируются и до 20000 человек умирают. Столь высокие показатели обусловлены тем, что в эндемичной зоне земного шара проживает примерно 40% человечества, и в последние годы специалисты ВОЗ с тревогой говорят о том, что по мере глобального потепления это опасное заболевание неизбежно будет подниматься на север. Разработанные к настоящему времени вакцины рекомендуется применять лишь у ранее уже инфицированных и переболевших; иммунная защита вырабатывается лишь к одному типу лихорадки, тогда как к другим серотипам человек остается восприимчивым, – и это главная проблема в аспекте иммунизации. Лечение симптоматическое, этиопатогенетической терапии пока не существует.

Ротавирус

Лечение симптоматическое, основной задачей выступает регидратация и дезинтоксикация. Доступны вакцины. Этиотропных препаратов пока нет.

В эпидемиологическом плане ротавирусные инфекции являются глобальной проблемой: они широко распространены по всему миру. Заболеваемость оценивается на уровне 25 миллионов новых случаев в год, летальность составляет порядка 3% с большим разбросом, – от 600 до 900 тысяч человек ежегодно умирают, из них до полумиллиона – дети в возрасте до пяти лет. Тяжелые формы течения с летальным исходом регистрируются, в основном, в регионах со слаборазвитой медициной, однако встречаются и в развитых странах, т.е. опасность ротавирусов не следует недооценивать в любом случае.

Вирус SARS-CoV

Судя по заголовкам пунктов, статья становится всё актуальнее, не так ли?

Вирус MERS-CoV

Вспышка началась осенью 2012 году в Саудовской Аравии, затем охватила соседние страны; весной 2015 года бетакоронавирус (родовое название) был завезен в Южную Корею, где уже к осени очаг, – а это была самая серьезная вспышка за пределами Ближнего Востока, – удалось локализовать и подавить.

Бетакоронавирусный респираторный синдром характеризуется тяжелым течением, выраженной лихорадкой, кашлем, затруднениями дыхания и общей гипоксией; в случаях развития тяжелой вирусной пневмонии наблюдается прогрессирующая дыхательная и, нередко, почечная недостаточность, – что и приводит к летальным исходам.

Вирус SARS-CoV-2

Ну вот и добрались. В своих публикациях мы обещали обсудить самые наболевшие вопросы, связанные с продолжающейся в настоящее время пандемией коронавирусной болезни CoViD-19 (это официальное и единственно корректное международное наименование). Ситуацию с этим заболеванием мы отслеживаем и освещаем в новостной ленте чуть ли не с самого начала, и мы готовы говорить об этом.

Обратите внимание на редакторский комментарий к ней, датированный мартом 2020 года. Его мы переведем полностью:

Мы не знаем. В штате Лахта Клиники пока, к сожалению, нет высококвалифицированных специалистов в области молекулярной генетики. И было бы верхом безответственности занимать какую бы то ни было позицию и поддерживать какое бы то ни было мнение, не имея на то достаточной информации (вполне возможно, она и впрямь когда-нибудь всплывет) и достаточной компетентности.

Сейчас вообще не это главное.

Пора, кажется, действовать осмотрительно, умно, информированно и, главное, коллективно.

Мы сейчас на осадном положении. Мы все сейчас в одной лодке, – понимаете? – весь земной шар, все человечество.


Обзор

Человеческая Т-клетка (синий), атакованная ВИЧ (желтый). Вирус ориентирован на Т-клетки, которые играют важную роль в иммунной реакции организма против вторжений, таких как бактерии и вирусы.

Автор
Редакторы


Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?

Схема трехдоменной классификации

Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA).

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].

Строение мембранных липидов бактерий и архей

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева)

Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Сценарий вирусного мира

Рисунок 3. Сценарий вирусного мира в гипотезе доклеточного происхождения вирусов подпись

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).

Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса

Схематическое представление структуры модели эволюции РНК-подобной системы

Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте.

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами .

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.

Схема общей трансдукции

Рисунок 5. Схема общей трансдукции

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].

Роль гена Peg10 в эмбриональном развитии

Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24].

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).

Горизонтальный перенос генов в рамках трехдоменного дерева

Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.


Обзор

Автор
Редакторы

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма

Дмитрий Ивановский и Эдвард Дженнер

Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).

Строение ВИЧ

Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].

Генетическая организация ВИЧ-1

Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).

Вирус Эбола

Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.

Схема развития феномена ADE

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.

Макрофаг, инфицированный ВИЧ-1

Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.

Мембрана макрофага и ВИЧ

Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.

Воссозданный вирус H1N1

Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

В своем бескрайнем эгоцентризме человек долгое время видел себя на самой вершине пирамиды живых существ. Представлялось, что верхние этажи ее населяют близкие к нам животные, следом идут неподвижные грибы и растения, а основание занимают мириады мельчайших организмов, простейших и бактерий. И где-то на самом дне этой условной пирамиды, прямо на границе живого, расположились бесчисленные вирусы.

Больше, длиннее, древнее: вирусы-гиганты

Возбудители оспы (сверху) – одни из самых крупных вирусов. Похожее на гантель ядро содержит ДНК, защищенную белковым капсидом. Его окружает сферическая оболочка, оторванная от мембраны хозяйской клетки. Белковые трубочки на поверхности скрывают вирус от иммунной системы и обеспечивают заражение.

Неудивительно, что в пирамиде жизни место им нашлось только в самом низу. Вполне живым можно назвать разве что вирус, захвативший клетку и начавший действовать, используя ее механизмы синтеза белков и нуклеиновых кислот. Но в свободной форме он скорее мертв, чем жив: с появлением электронных микроскопов в 1930-х годах выяснилось, что их крошечные частицы (вирионы) представляют собой большие молекулярные комплексы, состоящие из белков и ДНК (или РНК), и способны разве что пассивно сохранять и переносить геном паразита от одного хозяина к другому.

Древо жизни

А по мере все лучшего понимания их устройства к этим отрицаниям добавились новые: не делятся, не синтезируют белки, не производят энергию. Наконец, вирусы не оставляют окаменелостей и следов в палеонтологической летописи, так что даже вопрос о том, откуда они появились, по-прежнему остается загадкой.

Не существует ни единого гена, который был бы общим для всех вирусов на свете. Вдобавок их крошечные геномы чрезвычайно изменчивы, что сильно затрудняет анализ происхождения и эволюции вирусов привычными методами биоинформатики – например, сравнением последовательности нуклеотидов в их ДНК или РНК. Это же касается и аминокислотной последовательности вирусных белков. С другой стороны, функции, которые выполняют те же белки, определяются не столько их набором аминокислот, сколько пространственной конфигурацией, формой – фолдингом. Поэтому важные детали белковых структур остаются куда более стабильными во времени, чем их аминокислотные цепочки или кодирующие их нуклеотиды.

Это позволяет анализировать эволюционные отношения организмов, исходя из характерных элементов фолдинга их белков. Несколько лет назад такой анализ был проделан для 11 млн белковых структур. Биологи выделили в общей сложности 1995 суперсемейств фолдинга (Folding Superfamilies, FSF), две трети которых имеются только у клеточных организмов – бактерий, архей, эукариот. При этом большая часть остальных суперсемейств встречается у всех организмов, включая и вирусы. Это в общей сложности 424 FSF – более 1/5 их общего числа, весьма внушительное количество, которое свидетельствует в пользу гипотезы о долгом общем прошлом и коэволюции древнейших протоклеточных и протовирусных форм.

Красивые и смертельно опасные

Вирус герпеса в мужском семени становится причиной неудачных беременностей у женщин

Ученые до сих пор не уверены, стоит ли считать вирусы живыми существами. Эти организмы размером всего несколько нанометров представляют собой завернутую в белковую оболочку короткую нитку нуклеотидов, где закодирована генетическая информация. Они гораздо меньше бактерий и клеток, неспособны самостоятельно производить белки, из которых состоит все живое. Поэтому фактически не живут вне клетки. В природе могут сохраняться длительное время в неактивном состоянии. Но, попав в живой организм, быстро размножаются за счет ресурсов хозяина.

Большинство вирусов неопасны для человека, поскольку наша иммунная система их уничтожает. Уже в слизистой оболочке, через которую чаще всего проникают вирусы, на них нападают фагоциты, а в крови — лимфоциты. Клетки начинают производить белки-интерфероны, мешающие вирусу размножаться. В крайнем случае зараженные клетки гибнут сами. Однако некоторые вирусы настолько быстро размножаются, что ломают все защитные механизмы или настраивают их против организма, вызывая тяжелое воспаление, лихорадку.

Возможно, вирусы — это части ДНК или РНК, сбежавшие из многоклеточного организма. По другой гипотезе, вирусы древнее, чем клетка. Вот почему части вирусного генома встроены в ДНК бактерий и животных в виде "мусора". Высказывалось также предположение, что борьба вирусов и клеток послужила драйвером эволюции.

Вирусы открыты в 1892 году русским микробиологом Дмитрием Ивановским, пытавшимся понять, чем вызвана мозаичная болезнь табака. С тех пор описано несколько тысяч вирусов. Но ученые полагают, что еще сотни тысяч или миллионы неизвестны. Вирусы очень разнообразны по своему строению и механизму действия. В природе нет ни одной группы живых организмов, которую бы не поражали вирусы. Человек — не исключение.

Читайте также: