Противовирусные вакцины для детей

Обновлено: 05.05.2024

Дополнительные материалы

Национальный календарь прививок – документ, утверждаемый приказом Минздрава РФ, который определяет сроки и типы вакцинаций (профилактических прививок), проводимых бесплатно и в массовом порядке в соответствии с программой обязательного медицинского страхования (ОМС).

Прививочный календарь разрабатывается с учетом всех возрастных особенностей, в том числе и наиболее опасных инфекционных заболеваний у детей первого года жизни. Прививки, которые делаются в рамках Национального календаря, позволяют значительно снизить риск заболевания у детей. А если ребенок все же заболеет, то сделанная прививка будет способствовать протеканию болезни в более легкой форме и избавит от тяжелых осложнений , многие из которых крайне опасны для жизни.

Национальный календарь прививок – это система наиболее рационального применения вакцин, обеспечивающая развитие напряженного иммунитета в самом раннем (ранимом) возрасте в максимально короткие сроки. Календарь прививок можно разделить на две части.

Первая часть – Национальный календарь профилактических прививок, предусматривающий вакцинацию против повсеместно распространенных инфекций, которыми переболевает практически вся человеческая популяция (воздушно-капельные инфекции – корь, краснуха, эпидемический паротит, коклюш, ветряная оспа, дифтерия, грипп), а также инфекций, которые характеризуются тяжелым течением с высокой летальностью (туберкулез, гепатит В, дифтерия, столбняк, полиомиелит, гемофильная инфекция типа b).

Вторая часть – прививки по эпидемическим показаниям – против природно-очаговых инфекций (клещевой энцефалит, лептоспироз и др.) и зоонозных инфекций (бруцеллез, туляремия, сибирская язва). К этой же категории могут быть отнесены прививки, проводимые в группах риска – лицам как с высокой возможностью заражения, так и с высокой опасностью для окружающих в случае их заболевания (к таким заболеваниям относятся гепатит А, брюшной тиф, холера).

Национальный календарь – это авторитетный источник информации, который поможет родителям сориентироваться, от каких болезней можно защитить ребенка, и в какие сроки это лучше делать.

На сегодняшний день в мире известно более 1,5 тыс. инфекционных заболеваний, но люди научились предотвращать только 30 самых опасных инфекций с помощью профилактических прививок. Из них 12 инфекций, которые наиболее опасны (в том числе, своими осложнениями) и которыми легко заболевают дети во всем мире, входят в Национальный календарь профилактических прививок России. Еще 16 из списка опасных болезней включены в Национальный календарь прививок по эпидемическим показаниям.

Число предупреждаемых болезней по всему миру и болезни, включённые в обязательные Национальные календари прививок разных стран


В каждой стране-участнице ВОЗ есть собственный календарь прививок. Национальный календарь прививок России не имеет принципиального отличия от национальных календарей прививок развитых стран. Правда, в некоторых из них предусмотрено проведение прививок против гепатита А, менингококковой инфекции, вируса папилломы человека, ротавирусной инфекции (например, в США). Таким образом, к примеру , нацкалендарь прививок США более насыщен, чем календарь РФ. Календарь прививок в нашей стране расширяется – так, с 2015 г. в него включена прививка против пневмококковой инфекции.

С другой стороны, в некоторых странах в рамках Национального календаря не предусмотрена вакцинация против туберкулеза, сохранять которую в нашей стране заставляет высокий уровень заболеваемости этой инфекцией. И до сих пор вакцинация против туберкулеза включена в календарь прививок более чем 100 стран, при этом во многих предусмотрено проведение ее в первые дни после рождения, как это рекомендовано Календарем прививок ВОЗ.

Национальные календари прививок разных стран

ИнфекцииРоссия США Великобритания ГерманияКол-во стран, использующих вакцину в НК
Туберкулез +


более 100
Дифтерия+ + + + 194
Столбняк+ + + + 194
Коклюш+ + + + 194
Корь+ + + + 111
Грипп+ + + +
Гемофильная инфекция типа b/Хиб+ (группы риска) + + + 189
Краснуха+ + + + 137
Гепатит А
+


Гепатит В+ +
+ 183
Полиомиелит+ + + + все страны
Паротит+ + + + 120
Ветряная оспа
+
+
Пневмококк С 2015 г. + + + 153
Вирус папилломы человека / РШМ
+ + + 62
Ротавирусная инфекция
+

75
Менингококковая инфекция
+ + +
Всего инфекций12161214
Кол-во инъекций, вводимых до 2 лет1413
11

В России Нацональный календарь менее насыщен, чем календари прививок таких стран, как США, ряда стран Европы:

  • отсутствуют прививки против ротавирусной инфекции, ВПЧ, ветряной оспы;
  • привики против ХИБ проводят только в группах риска, гепатита А – по эпидпоказаниям;
  • отсутствует 2-я ревакцинация против коклюша;
  • недостаточно используются комбинированные вакцины.

Национальный календарь профилактических прививок

Категории и возраст граждан, подлежащих обязательной вакцинации Наименование профилактической прививки
Новорожденные в первые 24 часа жизниПервая вакцинация против вирусного гепатита B

Первая, вторая и третья вакцинации проводятся по схеме 0-1-6 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 3 доза - через 6 месяцев от начала вакцинации), за исключением детей, относящихся к группам риска, вакцинация против вирусного гепатита B которых проводится по схеме 0-1-2-12 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 2 доза - через 2 месяца от начала вакцинации, 3 доза - через 12 месяцев от начала вакцинации).

Вакцинация проводится вакциной для профилактики туберкулеза для щадящей первичной вакцинации (БЦЖ-М); в субъектах Российской Федерации с показателями заболеваемости, превышающими 80 на 100 тыс. населения, а также при наличии в окружении новорожденного больных туберкулезом - вакциной для профилактики туберкулеза (БЦЖ).

Первая, вторая и третья вакцинации проводятся по схеме 0-1-6 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 3 доза - через 6 месяцев от начала вакцинации), за исключением детей, относящихся к группам риска, вакцинация против вирусного гепатита B которых проводится по схеме 0-1-2-12 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 2 доза - через 2 месяца от начала вакцинации, 3 доза - через 12 месяцев от начала вакцинации).

Вакцинация проводится детям, относящимся к группам риска (родившимся от матерей - носителей HBsAg, больных вирусным гепатитом B или перенесших вирусный гепатит B в третьем триместре беременности, не имеющих результатов обследования на маркеры гепатита B, потребляющих наркотические средства или психотропные вещества, из семей, в которых есть носитель HBsAg или больной острым вирусным гепатитом B и хроническими вирусными гепатитами).

Первая и вторая вакцинации проводятся вакциной для профилактики полиомиелита (инактивированной).

Вакцинация проводится детям, относящимся к группам риска (с иммунодефицитными состояниями или анатомическими дефектами, приводящими к резко повышенной опасности заболевания гемофильной инфекцией; с онкогематологическими заболеваниями и/или длительно получающим иммуносупрессивную терапию; детям, рожденным от матерей с ВИЧ-инфекцией; детям с ВИЧ-инфекцией; детям, находящимся в домах ребенка).

Вакцинация проводится детям, относящимся к группам риска (с иммунодефицитными состояниями или анатомическими дефектами, приводящими к резко повышенной опасности заболевания гемофильной инфекцией; с онкогематологическими заболеваниями и/или длительно получающим иммуносупрессивную терапию; детям, рожденным от матерей с ВИЧ-инфекцией; детям с ВИЧ-инфекцией; детям, находящимся в домах ребенка).

Первая и вторая вакцинации проводятся вакциной для профилактики полиомиелита (инактивированной).

Первая, вторая и третья вакцинации проводятся по схеме 0-1-6 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 3 доза - через 6 месяцев от начала вакцинации), за исключением детей, относящихся к группам риска, вакцинация против вирусного гепатита B которых проводится по схеме 0-1-2-12 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 2 доза - через 2 месяца от начала вакцинации, 3 доза - через 12 месяцев от начала вакцинации).

Третья вакцинация и последующие ревакцинации против полиомиелита проводятся детям вакциной для профилактики полиомиелита (живой); детям, рожденным от матерей с ВИЧ-инфекцией, детям с ВИЧ-инфекцией, детям, находящимся в домах ребенка - вакциной для профилактики полиомиелита (инактивированной).

Вакцинация проводится детям, относящимся к группам риска (с иммунодефицитными состояниями или анатомическими дефектами, приводящими к резко повышенной опасности заболевания гемофильной инфекцией; с онкогематологическими заболеваниями и/или длительно получающим иммуносупрессивную терапию; детям, рожденным от матерей с ВИЧ-инфекцией; детям с ВИЧ-инфекцией; детям, находящимся в домах ребенка).

Вакцинация проводится детям, относящимся к группам риска (родившимся от матерей - носителей HBsAg, больных вирусным гепатитом B или перенесших вирусный гепатит B в третьем триместре беременности, не имеющих результатов обследования на маркеры гепатита B, потребляющих наркотические средства или психотропные вещества, из семей, в которых есть носитель HBsAg или больной острым вирусным гепатитом B и хроническими вирусными гепатитами).

Третья вакцинация и последующие ревакцинации против полиомиелита проводятся детям вакциной для профилактики полиомиелита (живой); детям, рожденным от матерей с ВИЧ-инфекцией, детям с ВИЧ-инфекцией, детям, находящимся в домах ребенка - вакциной для профилактики полиомиелита (инактивированной).

Третья вакцинация и последующие ревакцинации против полиомиелита проводятся детям вакциной для профилактики полиомиелита (живой); детям, рожденным от матерей с ВИЧ-инфекцией, детям с ВИЧ-инфекцией, детям, находящимся в домах ребенка - вакциной для профилактики полиомиелита (инактивированной).

Вторая ревакцинация проводится анатоксинами с уменьшенным содержанием антигенов.

Ревакцинация проводится вакциной для профилактики туберкулеза (БЦЖ).

Вторая ревакцинация проводится анатоксинами с уменьшенным содержанием антигенов.

Третья вакцинация и последующие ревакцинации против полиомиелита проводятся детям вакциной для профилактики полиомиелита (живой); детям, рожденным от матерей с ВИЧ-инфекцией, детям с ВИЧ-инфекцией, детям, находящимся в домах ребенка - вакциной для профилактики полиомиелита (инактивированной).

Вакцинация проводится детям и взрослым, ранее не привитым против вирусного гепатита B, по схеме 0-1-6 (1 доза - в момент начала вакцинации, 2 доза - через месяц после 1 прививки, 3 доза - через 6 месяцев от начала вакцинации).

Интервал между первой и второй прививками должен составлять не менее 3 месяцев

Первые прививки по Национальному календарю ребенок получает еще в роддоме – это самая первая прививка против гепатита В, которая делается в первые часы жизни. Нередко также в стенах роддома проводится и первая вакцинация против туберкулеза. До года дети прививаются от гемофильной инфекции, коклюша, полиомиелита, дифтерии, столбняка, пневмококковой инфекции. С полугода можно прививать ребенка от гриппа. Более старшие дети, в возрасте 12 месяцев, получают с помощью прививок защиту от кори, краснухи, эпидемического паротита.

Прививки полисахаридной вакциной (пневмо23, менингококковая вакцина и др.) следует начинать после 2-летнего возраста, так как организм ребенка не реагирует выработкой антител на эти антигены. Для детей более раннего возраста рекомендованы конъюгированные вакцины (полисахарид с белком).

Эпидемии гриппа уносили жизни людей миллионами, веками ученые не могли выяснить причину и научиться побеждать эту болезнь. Казалось бы, в современном мире не должно остаться вопросов, но ежегодно происходит 3-5 миллионов случаев болезни с тяжелым течением и 390-650 тысяч смертей! А тема вакцинации продолжает обрастать мифами. Почему вакцина не защищает на 100%, зачем нужно каждый год разрабатывать новую и почему в условиях COVID-19 особенно важно привиться от гриппа? Ответы в нашем обзорном материале.

Начало XX века: испанка

Самая известная пандемия гриппа, которая на слуху у всех – испанка. Откуда началась пандемия, доподлинно неизвестно. Есть мнение, что в числе первых стран был Китай. Чуть позже – Америка и Франция, и только спустя несколько месяцев – Испания, Италия, Швейцария и далее весь мир.

Отличительной чертой болезни было быстрое развитие тяжелой пневмонии. Испанка уносила жизни молодого поколения, почти не затрагивая людей 50-60 лет. Позднее медицина объяснит эту загадку тем, что у старшего поколения уже был сформирован иммунитет за счет ранее перенесенного гриппа с похожими штаммами.

В те времена врачи были почти бессильны. Они искали различные способы лечения, но единственное, что хоть как-то помогало, было переливание крови от уже переболевших и выздоровевших.

1-я половина ХХ века: открытие причины болезни

Как ни странно, такие бедствия влекут за собой еще и важные открытия в развитии науки. В 1933 году исследования британских ученых: Патрика Лэйдло, Уилсона Смита и Кристофера Эндрюса – привели к открытию вируса. Они провели эксперименты на лабораторных хорьках (а позднее – мышах) и доказали, что виновник заболевания не бактерия, а вирус.

В разработке первой вакцины принял участие шеффилдский профессор, Чарльз Стюарт-Харрис (автор классических учебников по вирусологии).

Еще одной сложностью стало то, что вирус быстро мутирует, но тогда ученые еще об этом не знали и грипп возвращался снова и снова.

Середина ХХ века: раскрыт секрет вируса

К этому времени ученые уже выделили 3 типа вируса гриппа. Их обозначили А, В и С.

1957 год. Американский вирусолог, Морис Хиллеман с коллегами при открытии очередной разновидности вируса гриппа обнаружили, что люди, пережившие пандемию 1889-1890 годов, имели устойчивость к новому вирусу. Ученые выявили, какие именно белки отвечают за формирование иммунитета и разработали подходящую вакцину.

Оказалось, что вирус гриппа состоит из поверхностных и внутренних антигенов. Поверхностные антигены изменчивы, а внутренние – постоянны.

Поверхностные антигены – это:
гемагглютинин (в наименовании штамма обозначается Н) – обеспечивает способность вируса присоединяться к клетке;
нейраминидаза (обозначается N) – отвечает за способность вирусной частицы проникать в клетку-хозяина и за способность вирусных частиц выходить из клетки после размножения.

Комбинации разных поверхностных антигенов определяют разные штаммы одного вируса A (H1N5, H1N1 и др.). Один из последних выявленных штаммов H18N11 обнаружен в 2013 году у летучих мышей в Центральной Америке.

Внутренние антигены составляют сердцевину (геном) вируса в виде рибонуклеопротеинового комплекса (нуклеопротеин в комплексе с вирусной РНК) и определяют тип вируса (А, В или С).

Однако страны, не имеющие вакцину, продолжали страдать от возвращения вируса, вспышки зафиксированы в конце 1969, в 1970 и 1972 годах. Однако, таких разрушительных последствий уже не было, ведь к этому времени существовали антибиотики, спасавшие от вторичных инфекций; была вакцинация в ряде государств; а также у многих переболевших сформировался иммунитет.

Необычное решение

Если для защиты от большинства вакциноуправляемых инфекций (корь, дифтерия, полиомиелит и т.д.) десятки лет применяется один и тот же состав вакцины, и при этом бывает достаточно 1 курса, а иногда и одной инъекции препарата для выработки у человека иммунитета на всю жизнь, то в ситуации с постоянно мутирующим гриппом ученым нужно было искать иной способ изготовления эффективной вакцины.

Найденное решение поражает своей трудоемкостью и масштабностью. Каждый год к сезону подъема заболеваемости гриппом нужно производить вакцины с новым составом! А для уменьшения риска ошибок предложено включать в вакцину не один штамм, а набор (обычно из трех) наиболее вероятных штаммов. Потребовалась система мониторинга и прогноза циркуляции вируса гриппа во всех странах на всех континентах.

В 1952 году в структуре ВОЗ была создана Глобальная система эпиднадзора за гриппом и принятия ответных мер (Global Influenza Surveillance and Response System (GISRS). Её работа заключается в сборе информации о вирусах со всех уголков мира. Полученные данные вносят в единую базу, и специальная комиссия принимает решение о прогнозе, какие штаммы гриппа будут активно циркулировать и могут вызвать эпидемию в предстоящем сезоне. Учитывается масса факторов, включая и агрессивность вновь выявленных вирусов, и схожесть с ранее циркулирующими штаммами, и наличие иммунитета в популяции.

Именно с участием этой системы появилась возможность эффективной вакцинопрофилактики гриппа.

Как это происходит

Каждый год в феврале происходит заседание ВОЗ, на котором по данным GISRS выдаются рекомендации производителям о штаммах вируса гриппа, которые следует включать в вакцину. В конце февраля-начале марта начинается выращивание штаммов. Почти все изготовители вакцин используют для этого старую проверенную технологию: вирус гриппа размножается в куриных эмбрионах. Если рекомендованный штамм хорошо культивируется – его и берут в производство. Иногда из-за плохого роста какого-либо типа вируса срочно подбирается хорошо растущий аналог со сходной антигенной структурой.

После этого процесс изготовления вакцины включается на полную мощность. Как правило, около 4 месяцев уходит на производство трех (или четырех) штаммов, обезвреживание (разными способами для разных типов вакцин), очистку, контроль качества, смешивание компонентов и расфасовку. Процесс производства вакцины рекомендуем посмотреть в ролике наших партнеров Sanofi Pasteur:

Конец ХХ – начало XXI вв.: врасплох

В таких редких случаях, когда происходят непредвиденные мутации гриппа, вакцины создают в экстренном порядке, чтобы не дать инфекции распространиться масштабно, и применяют отдельно, или включают новый штамм в сезонную вакцину.

В целом за почти 70 лет существования GISRS, система великолепно оправдала себя и показала правильность принятой стратегии по профилактике гриппа путем адаптации производства вакцины под мутации вируса.

На графике наглядно видно снижение заболеваемости в прямой зависимости от количества получивших прививку:

Почему вакцина не защищает на 100%?

Ранее мы уже разбирали случаи, когда привитые тоже могут болеть. Повторяясь, отметим, что любые вакцины не дают гарантии 100%. В инструкции к препаратам вы увидите показатели эффективности всегда выше 80%, близкие к 95-99%.

На эффективность влияют исходные характеристики вакцины и иммунный статус конкретного человека. В случае с гриппом, мы описали дополнительные риски и сложности, связанные с ежегодным прогнозированием и обновлением штаммов.

Ученые имеют богатый опыт борьбы с этим неуловимым врагом, в мире известно более 2000 серотипов вирусов гриппа. Однако риск появления совершенно новой мутации существует всегда, и пока ученые не могут этим управлять. Также как и не могут создать такую вакцину, которая бы защитила от гриппа пожизненно и на 100%.

Стоит ли прививаться, когда вы не уверены в прогнозах Глобальной системы эпиднадзора за гриппом – решать вам. Возможно, сделать сложный выбор помогут цифры: в России среди заболевших гриппом А – непривитые составили 91,8%, а среди умерших – 100%.

Сегодня: современные вакцины

Производство вакцин от гриппа — это вообще постоянная эволюция. Первые вакцины были живые. При производстве использовались ослабленные вирусы. Применялись в виде спрея в нос. Имели очень много побочных эффектов.
Представитель: Ультравак (Россия).

Затем – стали применять инактивированные вакцины. Первые из них содержали хоть и очищенные, но цельные вирусы (цельновирионные вакцины). Их реактогенность (способность оказывать побочные эффекты) была очень высока.
Представитель: Грипповак (Россия).

Позднее стали производить вакцины с разрушенным вирусом (расщепленные или сплит-вакцины). Они имеют меньше побочных реакций и достаточно высокую иммуногенность. В состав таких вакцин входят все вирионные белки вируса (и поверхностные, и внутренние антигены), но вследствие высокой очистки в них отсутствуют вирусные липиды и белки куриного эмбриона.
Представители: Ультрикс (Россия), ФЛЮ-М (Россия), Ваксигрип (Франция), Флюарикс (Германия), Флюваксин (Китай).

Следующий класс вакцин — субъединичные. Они содержат только очищенные поверхностные антигены вируса гриппа. Удалены не только белки вириона и куриного эмбриона, но и внутренние антигены. За счет этого достигнуто значительное снижение реактогенности. Для увеличения длительности и напряженности иммунитета производители субъединичных вакцин нередко в состав добавляют адъювант – вещество, которое усиливает иммунный ответ.
Представители: Инфлювак (Нидерланды),Гриппол плюс (Россия), Совигрипп (Россия).

Помимо обновления технологии инактивации, сборки, очистки гриппозных вакцин, ведутся и иные научные работы по поиску путей повышения качества, переносимости и эффективности противогриппозных вакцин.

Одним из способов повышения эффективности стала рекомендация ВОЗ переориентировать производства с 3-валентных на 4-валентные вакцины. Квадривалентные вакцины содержат белки сразу четырех опасных штаммов.
Примеры: Ультрикс Квадри (Россия), Гриппол квадривалент (Россия).

Кому нельзя?

У всех вакцин против гриппа имеются абсолютные и временные противопоказания, которые указываются в инструкциях к препаратам.

Вакцинация не проводится:

  • Если у вас гиперчувствительность к куриному белку, и есть тяжёлая аллергическая реакция на вакцину. Ключевое здесь — тяжёлая.
  • При острой болезни, простуде, которая протекает с температурой выше 38°С.
  • Если у врача есть основания, что не будет сформирован иммунный ответ организма. Например, если пациент принимает терапию, которая подавляет иммунный ответ.
  • Живая вакцина не применяется у детей до 3 лет, беременных женщин и у людей с нарушениями иммунитета.

Помните: Вводимая вакцина не вызывает заболевание и не способствует более тяжелому течению гриппа и других ОРВИ.

Почему особенно важно привиться в условиях COVID-19?

Какую вакцину от гриппа выбрать?

Грипп – смертельно опасная болезнь, важно в принципе сделать прививку ЛЮБОЙ ДОСТУПНОЙ ВАМ вакциной. Все вакцины сезона 2020-2021 будут содержать актуальные штаммы вирусов: (A/Guangdong-Maonan/SWL1536/2019(H1N1)pdm09; A/HongKong/2671/2019 (H3N2); B/Washington/02/2019 (B/Victorialineage). Для четырехвалентных вакцин ВОЗ рекомендовал дополнительно штамм подобный B/Phuket/3073/2013 (B/Yamagatalineage), который присутствовал в аналогичной вакцине в эпидемическом сезоне 2019-2020 годов.

Открытие метода вакцинации дало старт новой эре борьбы с болезнями.

В состав прививочного материала входят убитые или сильно ослабленные микроорганизмы либо их компоненты (части). Они служат своеобразным муляжом, обучающим иммунную систему давать правильный ответ инфекционным атакам. Вещества, входящие в состав вакцины (прививки), не способны вызвать полноценное заболевание, но могут дать возможность иммунитету запомнить характерные признаки микробов и при встрече с настоящим возбудителем быстро его определить и уничтожить.

Производство вакцин получило массовые масштабы в начале ХХ века, после того как фармацевты научились обезвреживать токсины бактерий. Процесс ослабления потенциальных возбудителей инфекций получил название аттенуации.

Сегодня медицина располагает более, чем 100 видами вакцин от десятков инфекций.

Препараты для иммунизации по основным характеристикам делятся на три основных класса.

  1. Живые вакцины. Защищают от полиомиелита, кори, краснухи, гриппа, эпидемического паротита, ветряной оспы, туберкулеза, ротавирусной инфекции. Основу препарата составляют ослабленные микроорганизмы — возбудители болезней. Их сил недостаточно для развития значительного недомогания у пациента, но хватает, чтобы выработать адекватный иммунный ответ.
  2. Инактивированные вакцины. Прививки против гриппа, брюшного тифа, клещевого энцефалита, бешенства, гепатита А, менингококковой инфекции и др. В составе мертвые (убитые) бактерии или их фрагменты.
  3. Анатоксины (токсоиды). Особым образом обработанные токсины бактерий. На их основе делают прививочный материал от коклюша, столбняка, дифтерии.

В последние годы появился еще один вид вакцин — молекулярные. Материалом для них становятся рекомбинантные белки или их фрагменты, синтезированные в лабораториях путем применения методов генной инженерии (рекомбининтная вакцина против вирусного гепатита В).

Схемы изготовления некоторых видов вакцин

Живые бактериальные

Блок-схема производства живых бактериальных вакцин

Схема подходит для вакцины БЦЖ, БЦЖ-М.

Живые противовирусные

Блок-схема производства живых противовирусных вакцин

Схема подходит для производства вакцин от гриппа, ротавируса, герпеса I и II степеней, краснухи, ветряной оспы.

Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться:

  • куриные эмбрионы;
  • перепелиные эмбриональные фибробласты;
  • первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков);
  • перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293).

Первичный сырьевой материал очищают от клеточного дебриса в центрифугах и с помощью сложных фильтров.

Инактивированные антибактериальные вакцины

Блок-схема производства бактериальных инактивированных вакцин

  • Культивация и очистка штаммов бактерий.
  • Инактивация биомассы.
  • Для расщепленных вакцин клетки микробов дезинтегрируют и осаждают антигены с последующим их хроматографическим выделением.
  • Для конъюгированных вакцин полученные при предыдущей обработке антигены (как правило, полисахаридные) сближают с белком-носителем (конъюгация).

Инактивированные противовирусные вакцины

Блок-схема производства инактивированных противовирусных вакцин

  • Субстратами для выращивания вирусных штаммов при производстве вакцин могут становиться куриные эмбрионы, перепелиные эмбриональные фибробласты, первичные клеточные культуры (куриные эмбриональные фибробласты, клетки почек сирийских хомячков), перевиваемые клеточные культуры (MDCK, Vero, MRC-5, BHK, 293). Первичная очистка для удаления клеточного дебриса проводится методами ультрацентрифугирования и диафильтрации.
  • Для инактивации используются ультрафиолет, формалин, бета-пропиолактон.
  • В случае приготовления расщепленных или субъединичных вакцин полупродукт подвергают действию детергента с целью разрушить вирусные частицы, а затем выделяют специфические антигены тонкой хроматографией.
  • Человеческий сывороточный альбумин применяется для стабилизации полученного вещества.
  • Криопротекторы (в лиофилизатах): сахароза, поливинилпирролидон, желатин.

Схема подходит для производства прививочного материала против гепатита А, желтой лихорадки, бешенства, гриппа, полиомиелита, клещевого и японского энцефалитов.

Анатоксины

Блок-схема производства анатоксинов

Для дезактивации вредного воздействия токсинов используют методы:

  • химический (обработка спиртом, ацетоном или формальдегидом);
  • физический (подогрев).

Схема подходит для производства вакцин против столбняка и дифтерии.

По данным Всемирной Организации Здравоохранения (ВОЗ), на долю инфекционных заболеваний приходится 25 % от общего количества смертей на планете ежегодно. То есть инфекции до сих пор остаются в списке главных причин, обрывающих жизнь человека.

Одним из факторов, способствующих распространению инфекционных и вирусных заболеваний, являются миграция потоков населения и туризм. Перемещение человеческих масс по планете влияет на уровень здоровья нации даже в таких высокоразвитых странах, как США, ОАЭ и государства Евросоюза.

Задать вопрос специалисту

Вопрос экспертам вакцинопрофилактики

Вопросы и ответы

Я много лет вакцинируюсь от гриппа вакциной французского производителя. В этом году терапевт предложила мне сделать прививку российской вакциной. Я ничего не знаю об отечественных вакцинах, какая из них качественная?

Отвечает Полибин Роман Владимирович

Отвечает Харит Сусанна Михайловна

Муж транспортировал вакцину РотаТек в другой город.Покупая ее в аптеке мужу посоветовали купить охлаждающий контейнер,и перед поездкой его заморозить в морозильной камере,потом привязать вакцину и так ее транспортировать. Время в пути заняло 5 часов. Можно ли вводить такую вакцину ребенку? Мне кажется,что если привязать вакцину к замороженному контейнеру, то вакцина замерзнет!

Отвечает Харит Сусанна Михайловна

Вы абсолютно правы, если в контейнере был лед. Но если там была смесь воды и льда- вакцина не должна замерзать. Однако живые вакцины, к которым относится ротавирусная, не увеличивают реактогенность при температуре менее 0, в отличие от неживых, а, например, для живой полиомиелитной допускается замораживание до -20 град С.

Моему сыну сейчас 7 месяцев.

В 3 месяца у него случился отек Квинке на молочную смесь Малютка.

Прививку от гепатита сделали в роддоме, вторую в два месяца и третью вчера в семь месяцев. Реакция нормальная, даже без температуры.

Но вот на прививку АКДС нам устно дали медотвод.

Я за прививки!! И хочу сделать прививку АКДС. Но хочу сделать ИНФАНРИКС ГЕКСА. Живем в Крыму. В крыму ее нигде нет. Посоветуйте как поступить в такой ситуации. Может есть зарубежный аналог? Бесплатную делать категорически не хочу. Хочу качественную очищеную, что бы как монжно меньше риска.

Отвечает Полибин Роман Владимирович

В Инфанрикс Гекса содержится компонент против гепатита В. Ребенок полностью привит против гепатита. Поэтому в качестве зарубежного аналога АКДС можно сделать вакцину Пентаксим. Кроме того, следует сказать, что отек Квинке на молочную смесь не является противопоказанием к вакцине АКДС.

Подскажите, пожалуйста, на ком и как тестируют вакцины?

Отвечает Полибин Роман Владимирович

Как и все лекарственные препараты вакцины проходят доклинические исследования (в лаборатории, на животных), а затем клинические на добровольцах (на взрослых, а далее на подростках, детях с разрешения и согласия их родителей). Прежде чем разрешить применение в национальном календаре прививок исследования проводят на большом числе добровольцев, например вакцина против ротавирусной инфекции испытывалась почти на 70 000 в разных странах мира.

Почему на сайте не представлен состав вакцин? Почему до сих пор проводится ежегодная реакция Манту (зачастую не информативна), а не делается анализ по крови, например, квантифероновый тест? Как можно утверждать реакции иммунитета на введенную вакцину, если еще ни кому не известно в принципе, что такое иммунитет и как он работает, особенно если рассматривать каждого отдельно взятого человека?

Отвечает Полибин Роман Владимирович

Состав вакцин изложен в инструкциях к препаратам.

Ребёнку 1 год и 8 месяцев, все прививки ставились в соответствии с календарем прививок. В том числе 3 пентаксима и ревакцинация в полтора года тоже пентаксим. В 20 месяцев надо ставить от полиомиелита. Очень всегда переживаю и отношусь тщательно к выбору нужных прививок, вот и сейчас перерыла весь интернет, но так и не могу решить. Мы ставили всегда инъекцию (в пентаксиме). А теперь говорят капли. Но капли-живая вакцина, я боюсь различных побочек и считаю, что лучше перестраховаться. Но вот читала, что капли от полиомиелита вырабатывают больше антител, в том числе и в желудке, то есть более эффективные, чем инъекция. Я запуталась. Поясните, инъекция менее эффективна (имовакс-полио, например)? Отчего ведутся такие разговоры? У каплей боюсь хоть и минимальный, но риск осложнения в виде болезни.

Отвечает Полибин Роман Владимирович

В настоящее время Национальный календарь прививок России предполагает комбинированную схему вакцинации против полиомиелита, т.е. только 2 первых введения инактивированной вакциной и остальные – оральной полиовакциной. Это связано с тем, чтобы полностью исключить риск развития вакциноассоциированного полиомиелита, который возможен только на первое и в минимальном проценте случаев на второе введение. Соответственно, при наличии 2-х и более прививок от полиомиелита инактивированной вакциной, осложнения на живую полиовакцину исключены. Действительно, считалось и признается некоторыми специалистами, что оральная вакцина имеет преимущества, так как формирует местный иммунитет на слизистых кишечника в отличие от ИПВ. Однако сейчас стало известно, что инактивированная вакцина в меньшей степени, но также формирует местный иммунитет. Кроме того, 5 введений вакцины против полиомиелита как оральной живой, так и инактивированной вне зависимости от уровня местного иммунитета на слизистых оболочках кишечника, полностью защищают ребенка от паралитических форм полиомиелита. В связи с вышесказанным вашему ребенку необходимо сделать пятую прививку ОПВ или ИПВ.

Следует также сказать, что на сегодняшний день идет реализация глобального плана Всемирной организации здравоохранения по ликвидации полиомиелита в мире, которая предполагает полный переход всех стран к 2019 году на инактивированную вакцину.

Отечественная паротитная моновакцина применятся с 1981 г. В 2001 г. налажено производство отечественной дивакцины, применение которой более предпочтительно с учетом решения экономических и этических проблем вакцинопрофилактики. Дивакцина обладает достаточной иммуногенностью, а по реактогенности не отличается от моновакцины.

Все тривакцины - зарубежного производства. Они отличаются друг от друга по набору вакцинных штаммов паротита, кори и краснухи, используемых для приготовления комплексных вакцин. Вакцины сходны по своим иммунобиологическим свойствам и могут быть использованы для вакцинации детей в рамках российского национального календаря прививок.

Харак-теристика препарата

Наименование вакцины и ее изготовителя

Вакцина паротитная культуральная живая сухая. Московское предприятие по производству бакпрепаратов, Россия

Вакцина паротитно-коревая культуральная живая сухая. Московское предприятие по производству бакпрепаратов, Россия

MMR-II
Живая вакцина против кори, паротита и краснухи. Мерк Шарп Доум, Нидерланды

Приорикс
Вакцина против кори, паротита и краснухи живая аттенуированная. Глаксо Смиткляйн, Бельгия

Вакцина против кори, паротита и краснухи аттенуированная лиофилизированная. Институт сывороток, Индия

1

2

3

4

5

6

Способ получения вакцины

Культивирование штамма вируса паротита Л-3 в первчиной культуре фибробластов эмбрионов японских перепелов

Смесь коревой и паротитной вакцин, изготовленных методом культивирования штаммов вируса кори Л-16 и вируса эпидемического паротита Л-3 в первичной культуре клеток эмбрионов японских перепелов.

Препарат состоит из вакцинных штаммов вируса кори (штамм Edmonston), паротита (аттенуированный Enders штамм Jeryl Lynn), выращенных в культуре клеток куриного эмбриона, и штамма вируса краснухи (Wistar RA27/3), выращенного в культуре диплоидных клеток человека (WI-38).

Препарат состоит из вакцинных штаммов вирусов кори (Schwarz), паротита (RIT 43/85, производный Jeryl Lynn) и краснухи (Wistar RA27/3), культивируемых раздельно в культуре клеток куриного эмбриона (вирусы кори и паротита) и диплоидных клеток человека (вирус краснухи).

Вакцина состоит из вакцинных штаммов вирусов кори (Эдмонстон-Загреб), паротита (Л-Загреб) и краснухи (Wistar RA27/3). Вирусы кори и краснухи культивируются раздельно на диплоидных клетках человека, вирус паротита - на клетках куриных эмбрионов.

Состав вакцины

Одна прививочная доза содержит не менее 20000 ТЦД50 вируса паротита и не более 25 мкг гентамицина сульфата. Стабилизаторы ЛС-18 и желатин или сорбит и желатоза.

Одна прививочная доза содержит не менее 1000 ТЦД50 вируса кори, не менее 20000 ТЦД50 вируса паротита и не более 25 мкг гентамицина сульфата. Стабилизаторы - те же, что и у паротитной моновакцины.

Одна прививочная доза содержит не менее 1000 ТЦД50 вируса кори, 5000 ТЦД50 вируса паротита, 1000 ТЦД50 вируса краснухи, около 25 мкг неомицина. Стабилизаторы - сорбит и желатин.

Одна прививочная доза содержит не менее 1000 ТЦД50 вируса штамма Schwarz, 5000 ТЦД50 штамма RIT4385 и 1000 ТЦД50 штамма Wistar, не более 25 мкг неомицина сульфата.

Одна прививочная доза содержит не менее 1000 ТЦД50 вируса кори, 5000 ТЦД50 вируса паротита и 1000 ТЦД50 вируса краснухи. Стабилизаторы - желатин и сорбитол. Неомицина не более 10 мкг на дозу.

Иммуно-биологи-ческие свойства

Вызывает образование антипаротитных антител. Максимальный уровень антител достигаете через 6-7 недель после прививки.

Вакцина обеспечивает защитный уровень антикоревых антител через 3-4 недели и антипаротитных антител через 6-7 недель.

Вызывает образование соответствующих антивирусных антител и обеспечивает сохранение защитного уровня антител в течение 11 лет после прививки.

Вызывает образование соответствующих антивирусных антител в т.ч. к вирусу паротита у 96,1% ранее серонегативных лиц. Защитный титр сохраняется в течение года у 88,4% привитых.

Вызывает образование антител к вирусам паротита, кори и краснухи.

1

2

3

4

5

6

Назначение

Плановая и экстренная профилактика эпидемического паротита.

Плановая и экстренная профилактика эпидемического паротита и кори.

Плановая профилактика кори, паротита и краснухи.

Плановая профилактика кори, паротита и краснухи.

Плановая профилактика кори, паротита и краснухи.

Противо-показания

Острые заболевания, обострение хронических болезней. Сильные общие (температура выше 40 о С) или местные (гиперемия и/или отек диаметром более 8 см) реакции. Беременность. Перчиные иммунодефициты. Иммуносупрессивная терапия.

Аллергические реакции на аминогликозиды и на куриные яйца. Первичные иммунодефициты и онкологические заболевания. Сильные общие (температура выше 40 о С) или местные (гиперемия и/или отек диаметром более 8 см) реакции. Беременность.

Беременность. Аллергические реакции на неомицин и яичный белок. Острые заболевания. Иммуносупрессивная терапия. Злокачественные опухоли. Первичный или приобретенный иммунодефицит.

Системные аллергические реакции к неомицину и куриным яйцам. Первичные и вторичные иммунодефициты. Острые заболевания и обострение хронических болезней. Беременность.

Острые заболевания, обострение хронических болезней. Иммунодефицитные состояния, злокачественные новообразования, иммуносупрессивная терапия. Сильные местные и общие реакции или осложнения на предшествующее введение вакцины, системные аллергические реакции на компоненты вакцины, беременность.

Побочное действие

На 4-12 сутки возможно кратковременное повышение температуры, появление гиперемии зева, ринита; незначительное увеличение околоушных слюнных желез, гиперемия и отек в месте инъекции. Крайне редко возникают аллергические реакции (в течение 24-48 ч) и признаки доброкачественно протекающего серозного менингита (через 2-4 недели после прививки).

На 4-18 сутки могут наблюдаться температурные реакции и катаральные явления со стороны носоглотки, продолжающиеся 1-3 дня. В редких случаях происходит незначительное увеличение околоушных желез и сыпь. Повышение температуры тела выше 38,5 о С возникает не более, чем у 2% привитых детей. Местные реакции, как правило, отсутствуют, редко появляются гиперемия и отек. К осложнениям, которые бывают крайне редко, относятся аллергические реакции, доброкачественно протекающий серозный менингит.

Часто возникают быстропроходящее жжение и/или болезненность в месте инъекции. Более редко появляется лихорадка (38,5 о С и выше) и сыпь (на 5-12 день). Редко возникают более серьезные неспецифические местные реакции, аллергические реакции и изменения функции со стороны различных систем организма.

Редко появляются гиперемия в месте введения, боль, отек, опухание околоушных желез. Крайне редко развиваются ринит, кашель, бронхит.

Кратковременная гиперемия, незначительный отек и болезненность. Повышение температуры до 37,9 о С, головная боль, катаральные явления, тошнота - у 8% привитых, кратковременная сыпь у 1-2% лиц на 6-14 день после вакцинации. Редко наблюдается увеличение околоушных желез и крайне редко - реакция со стороны ЦНС.

ДНК-вакцинация

Используя один и тот же плазмидный или вирусный вектор, можно создавать вакцины против различных инфекционных заболеваний, меняя только последовательность, кодирующую необходимые белки-антигены. При этом отпадает необходимость работать с опасными вирусами и бактериями, становится ненужной сложная и дорогостоящая процедура очистки белков. Препараты ДНК-вакцин не требуют специальных условий хранения и доставки, они стабильны длительное время при комнатной температуре.

Уже разработаны и испытываются ДНК-вакцины против инфекций, вызываемых вирусами гепатитов B и C, гриппа, лимфоцитарного хориоменингита, бешенства, иммунодефицита человека (ВИЧ), японского энцефалита, а также возбудителями сальмонеллеза, туберкулеза и некоторых паразитарных заболеваний (лейшманиоз, малярия). Эти инфекции крайне опасны для человечества, а попытки создать против них надежные вакцинные препараты классическими методами оказались безуспешными.

ДНК-вакцинация — одно из самых перспективных направлений в борьбе с раком. В опухоль можно вводить разные гены: те, что кодируют раковые антигены, гены цитокинов и иммуномодуляторов.

Проведя компьютерный (in silico) анализ генома, исследователь получает не только список кодируемых белков, но и некоторые их характеристики, например, принадлежность к определенным группам, возможная локализация внутри бактериальной клетки, связь с мембраной, антигенные свойства.

Третий подход основан на протеомной технологии. Ее методы дают возможность детализировать количественную и качественную характеристики белков в компонентах клетки. Существуют компьютерные программы, которые по аминокислотной последовательности могут предсказать не только трехмерную структуру изучаемого белка, но и его свойства и функции.

Используя эти три метода, можно отобрать набор белков и соответствующие им гены, которые представляют интерес для создания вакцины. Как правило, в эту группу входит около 20-30% всех генов бактериального генома. Для дальнейшей проверки нужно синтезировать и очистить отобранный антиген в количествах, необходимых для иммунизации животных. Очистку белка проводят с помощью полностью автоматизированных приборов. Используя современные технологии, лаборатория, состоящая из трех исследователей, может в течение месяца выделить и очистить более 100 белков.

Важно не только создать вакцину, но и найти наилучший способ ее доставки в организм. Сейчас появились так называемые мукозальные вакцины, которые вводятся через слизистые оболочки рта или носа либо через кожу. Преимущество таких препаратов в том, что вакцина поступает через входные ворота инфекции и тем самым стимулирует местный иммунитет в тех органах, которые первыми подвергаются атаке микроорганизмов.

Терапевтические вакцины

Существующие терапевтические вакцины для лечения хронических воспалительных заболеваний, вызванных бактериями или вирусами, получают классическими методами. Такие вакцины способствуют развитию иммунитета к входящим в их состав микроорганизмам и активизируют врожденный иммунитет.

Терапевтические вакцины

Одна из важнейших целей разработчиков терапевтических вакцин — ВИЧ-инфекция. Уже проведена серия доклинических и клинических испытаний нескольких препаратов. Их способность вызывать развитие клеточного иммунитета у здоровых людей не вызывает сомнений. Однако убедительных данных о том, что вакцины подавляют размножение вируса у больных, пока нет.

Схема изготовления дендритной вакцины такова: из крови больного выделяют клетки, которые дают начало дендритным клеткам, и размножают их в лабораторных условиях. Одновременно из опухоли пациента выделяют белки-антигены. Дендритные клетки некоторое время выдерживают вместе с опухолевыми антигенами, чтобы они запомнили образ врага, а затем вводят больному. Такая стимуляция иммунной системы заставляет организм активно бороться с опухолью.

У мышей дендритные вакцины помогают предупредить повторное развитие карциномы после удаления опухоли. Это позволяет надеяться, что они будут эффективны для продления безрецидивного периода онкологических больных после хирургического вмешательства.

Читайте также: