Строение бактериальной клетки вирусы

Обновлено: 13.05.2024

Наиболее полно изучена структура бактериального генома, в особенности генома E. coli. Основной объем генетической информации бактериальной клетки заключен в ее единственной хромосоме. Размер генома у разных бактерий колеблется от нескольких сотен тысяч пар нуклеотидов (п.н.) до нескольких миллионов п.н. У E. coli он равен 4,6 млн. п.н., а его кодирующая часть составляет 88,6%.

В состав бактериальных геномов входят независимые гены и опероны. Работа независимых генов не регулируется другими генами, а их экспрессия носит конститутивный (непрерывный) характер. От соседних генов независимые гены отделены некодирующими участками (спейсерами), которые обычно не транскрибируются. В отличие от независимых генов оперон — это группа рядом расположенных структурных генов, имеющих общую систему регуляции. Обычно эти гены участвуют в осуществлении последовательных этапов какого-либо биохимического процесса. Впервые модель оперона была разработана в 1960 г. французскими биохимиками Ф. Жакобом и Ж. Моно на примере процесса сбраживания лактозы. В систему лактозного оперона входят три структурных гена (Z, Y, A), кодирующие три фермента, участвующие в процессе сбраживания молочного сахара (см. схему). Основным ферментом является β-галактозидаза.

К системе регуляции оперона относятся промотор, оператор и ген-регулятор. Промотор расположен перед оператором и является участком, который узнается ферментом РНК-полимеразой, осуществляющим транскрипцию структурных генов. Одна из субъединиц фермента (δ-частица) узнает промотор по специфической последовательности нуклеотидов (блок Прибнова), благодаря чему РНК-полимераза связывается с матрицей.

Схема действия лактозного оперона

Схема действия лактозного оперона

Фермент начинает транскрипцию, если расположенный рядом с промотором оператор не связан с белком-репрессором, вырабатываемым под контролем гена-регулятора. Отсутствие этой связи обусловлено наличием в клетке субстрата — лактозы, с которой соединяется репрессор. Как только уровень лактозы в клетке падает, регуляторный белок освобождается и садится на оператор, препятствуя тем самым транскрипции структурных генов. Такой тип регуляции носит название негативной индукции, т.к. отсутствие репрессора запускает работу оперона. У прокариот установлены и другие механизмы оперонной регуляции. Например, при синтезе триптофана она может осуществляться по типу репрессии, при котором сам конечный продукт (триптофан) является корепрессором и в комплексе с белком-регулятором, связываясь с оператором, препятствует транскрипции.

Объем генома прокариот может увеличиваться, с одной стороны, за счет копирования имеющихся генов, а с другой — за счет включения в геном чужеродной генетической информации. Путями переноса информации у прокариот являются процессы трансформации, конъюгации, трансдукции и транспозиции.

Схема процесса трансформации у бактерий

Схема процесса трансформации у бактерий

Под трансформацией понимают включение в геном фрагментов чужеродной ДНК, в результате чего клетка приобретает новый признак. Естественную трансформацию наблюдали в смешанных посевах двух штаммов, несущих разные биохимические мутации. О трансформации судили по появлению клеток дикого типа, что возможно только при объединении обеих мутаций в одном геноме и их комплементации. Искусственная трансформация достигается обработкой клеток препаратом ДНК. В обоих случаях клетка, способная воспринимать чужеродную ДНК, находится в особом физиологическом состоянии, которое называется компетенцией. Оно характеризуется увеличением проницаемости клеточной мембраны и активацией ферментативной системы, которая осуществляет перенос фрагмента ДНК через мембрану, разделение его на одиночные цепи и встраивание одиночной цепочки в состав бактериальной хромосомы.

Другим каналом для передачи информации у прокариот является процесс конъюгации. Во время конъюгации между двумя бактериальными клетками возникает контакт с образованием цитоплазматического мостика, по которому из одной клетки в другую поступает ДНК.

Образование конъюгационного мостика

Образование конъюгационного мостика

Основная роль в этом процессе принадлежит половому фактору бактерий — F-плазмиде, внехромосомному носителю информации. Клетки, несущие эту плазмиду (F + ), в процессе конъюгации играют роль доноров, а не имеющие ее (F — ) — реципиентов. Переход плазмиды из клетки-донора в клетку-реципиент инициирует процесс обмена между ними генетической информацией, т.к. вслед за F-фактором может переноситься бактериальная хромосома.

Процесс конъюгации у бактерий гомологичен половому процессу у высших организмов, но отличается от него рядом специфических особенностей. Главная из них состоит в неполной передаче наследственного материала (хромосомы) от донора к реципиенту, благодаря чему образуется частичная зигота — мерозигота, по терминологии Ф. Жакоба и Е. Вольмана. Отсюда весь процесс был назван меромиксисом.

В переносе информации от одной бактериальной клетки к другой принимают также участие некоторые бактериальные вирусы — бактериофаги. Это явление получило название трансдукции. Оно было открыто в 1952 г. Дж. Ледербергом и Н. Циндером. Для вирусов, способных переносить информацию, характерен специфический путь развития. Проникнув в клетку, они встраиваются в бактериальную хромосому и могут длительное время находиться в ее составе, уподобляясь ее фрагменту. Это состояние является неактивным, т.к. вирусная ДНК не транскрибируется, и, следовательно, не синтезируются вирусные белки и не образуются новые вирусные частицы.

Схема процесса конъюгации у бактерий

Схема процесса конъюгации у бактерий

Передача генетического материала в результате конъюгации у E. coli:
а — передача F-фактора от донора к реципиенту в скрещивании F + xF – ; б — образование линии Hfr в результате интеграции F + — фактора и передачи бактериальных генов от донорных к реципиентным клеткам в ходе скрещивания F + x Hfr.

Такой путь развития называется лизогенным, а интегрированный вирус — провирусом. Бактериальная клетка, несмотря на присутствие в ней вируса, не подвергается лизису. Однако через какое-то время вирус может активизироваться и выходить из состава хромосомы, “прихватывая” близлежащий фрагмент ДНК бактерии. Следом начинается процесс репликации вирусной ДНК и вместе с нею фрагмента хромосомы. Затем синтезируются вирусные белки и идет сборка новых вирусных частиц, в геном которых включается фрагмент бактериальной ДНК. При этом аналогичный объем собственной информации вирус утрачивает. Клетка в итоге погибает, а освободившиеся из нее вирусные частицы заражают другие клетки, внося в них фрагмент ДНК первого хозяина.

Схема процесса трансдукции у E. coli

Схема процесса трансдукции у E. coli

И, наконец, перенос информации в пределах одного генома осуществляется в ходе процесса транспозиции. Транспозиция — это перемещение участка хромосомы из одного места в геноме (локуса) в другой. У бактерий известно два типа транспозирующих элементов: IS-частицы и транспозоны. IS-частицы представляют собой короткие последовательности нуклеотидов, ограниченные концевыми повторами. Они несут информацию о своем перемещении, т.к. в них есть участок, кодирующий структуру фермента транспозазы, осуществляющего вырезание (эксцизию) и встраивание (инсерцию) частицы. Другой информации в IS-частицах нет. В отличие от них транспозоны содержат один или несколько структурных генов, а сложные транспозоны на обоих концах несут еще IS-частицы. Встраивание IS-частиц и транспозонов может вызывать мутации или инактивацию генов, что является одним из возможных путей реорганизации геномов.

Схема строения сложного транспозона

Схема строения сложного транспозона

Центральный район, несущий ген или гены сопротивляемости к тетрациклину, фланкирован прямыми или инвертированными IS-элементами. В свою очередь, IS-элементы имеют собственные терминальные инвертированные повторы.

В состав бактериального генома входит также плазмидная ДНК. Плазмида — это экстрахромосомный носитель наследственной информации. Количество плазмид в клетке непостоянно. Плазмиды бывают мелкие и крупные, однокопийные и мультикопийные. Однокопийные плазмиды обычно встраиваются в бактериальную хромосому и реплицируются вместе с ней. Их называют эписомами. Мультикопийные плазмиды существуют автономно и реплицируются независимо от бактериальной хромосомы. Число копий их различно. Некоторые плазмиды (например, F-фактор) могут попеременно находиться либо в интегрированном, либо в автономном состоянии. Плазмидная ДНК определяет такие свойства бактериальной клетки, как устойчивость к антибиотикам (R-плазмиды), синтез колицинов — веществ, подавляющих рост других типов бактерий (Col-плазмиды) и др. Многие плазмиды обладают способностью к трансмиссии, т.е. к переходу из одной клетки в другую. Внутри плазмид могут находиться транспозоны.

Карта F-фактора и плазмиды R

Карты F-фактора и плазмиды R

В составе бактериального генома часто обнаруживается вирусная ДНК. Вирусные гены по структуре сходны с бактериальными, но у вирусов есть перекрывающиеся гены. Перекрывание генов происходит в том случае, когда одна и та же последовательность ДНК кодирует структуру двух или трех разных белков за счет изменения рамки считывания.

Перекрывающиеся гены были обнаружены Ф. Сенгером в 1977 г. у фага φХ174. Считается, что такая генетическая система является экономичной. Но одновременно мутация в этом локусе может привести к повреждению сразу нескольких генов.

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":

Наиболее полно изучена структура бактериального генома, в особенности генома E. coli. Основной объем генетической информации бактериальной клетки заключен в ее единственной хромосоме. Размер генома у разных бактерий колеблется от нескольких сотен тысяч пар нуклеотидов (п.н.) до нескольких миллионов п.н. У E. coli он равен 4,6 млн. п.н., а его кодирующая часть составляет 88,6%.

В состав бактериальных геномов входят независимые гены и опероны. Работа независимых генов не регулируется другими генами, а их экспрессия носит конститутивный (непрерывный) характер. От соседних генов независимые гены отделены некодирующими участками (спейсерами), которые обычно не транскрибируются. В отличие от независимых генов оперон — это группа рядом расположенных структурных генов, имеющих общую систему регуляции. Обычно эти гены участвуют в осуществлении последовательных этапов какого-либо биохимического процесса. Впервые модель оперона была разработана в 1960 г. французскими биохимиками Ф. Жакобом и Ж. Моно на примере процесса сбраживания лактозы. В систему лактозного оперона входят три структурных гена (Z, Y, A), кодирующие три фермента, участвующие в процессе сбраживания молочного сахара (см. схему). Основным ферментом является β-галактозидаза.

К системе регуляции оперона относятся промотор, оператор и ген-регулятор. Промотор расположен перед оператором и является участком, который узнается ферментом РНК-полимеразой, осуществляющим транскрипцию структурных генов. Одна из субъединиц фермента (δ-частица) узнает промотор по специфической последовательности нуклеотидов (блок Прибнова), благодаря чему РНК-полимераза связывается с матрицей.

Схема действия лактозного оперона

Схема действия лактозного оперона

Фермент начинает транскрипцию, если расположенный рядом с промотором оператор не связан с белком-репрессором, вырабатываемым под контролем гена-регулятора. Отсутствие этой связи обусловлено наличием в клетке субстрата — лактозы, с которой соединяется репрессор. Как только уровень лактозы в клетке падает, регуляторный белок освобождается и садится на оператор, препятствуя тем самым транскрипции структурных генов. Такой тип регуляции носит название негативной индукции, т.к. отсутствие репрессора запускает работу оперона. У прокариот установлены и другие механизмы оперонной регуляции. Например, при синтезе триптофана она может осуществляться по типу репрессии, при котором сам конечный продукт (триптофан) является корепрессором и в комплексе с белком-регулятором, связываясь с оператором, препятствует транскрипции.

Объем генома прокариот может увеличиваться, с одной стороны, за счет копирования имеющихся генов, а с другой — за счет включения в геном чужеродной генетической информации. Путями переноса информации у прокариот являются процессы трансформации, конъюгации, трансдукции и транспозиции.

Схема процесса трансформации у бактерий

Схема процесса трансформации у бактерий

Под трансформацией понимают включение в геном фрагментов чужеродной ДНК, в результате чего клетка приобретает новый признак. Естественную трансформацию наблюдали в смешанных посевах двух штаммов, несущих разные биохимические мутации. О трансформации судили по появлению клеток дикого типа, что возможно только при объединении обеих мутаций в одном геноме и их комплементации. Искусственная трансформация достигается обработкой клеток препаратом ДНК. В обоих случаях клетка, способная воспринимать чужеродную ДНК, находится в особом физиологическом состоянии, которое называется компетенцией. Оно характеризуется увеличением проницаемости клеточной мембраны и активацией ферментативной системы, которая осуществляет перенос фрагмента ДНК через мембрану, разделение его на одиночные цепи и встраивание одиночной цепочки в состав бактериальной хромосомы.

Другим каналом для передачи информации у прокариот является процесс конъюгации. Во время конъюгации между двумя бактериальными клетками возникает контакт с образованием цитоплазматического мостика, по которому из одной клетки в другую поступает ДНК.

Образование конъюгационного мостика

Образование конъюгационного мостика

Основная роль в этом процессе принадлежит половому фактору бактерий — F-плазмиде, внехромосомному носителю информации. Клетки, несущие эту плазмиду (F + ), в процессе конъюгации играют роль доноров, а не имеющие ее (F — ) — реципиентов. Переход плазмиды из клетки-донора в клетку-реципиент инициирует процесс обмена между ними генетической информацией, т.к. вслед за F-фактором может переноситься бактериальная хромосома.

Процесс конъюгации у бактерий гомологичен половому процессу у высших организмов, но отличается от него рядом специфических особенностей. Главная из них состоит в неполной передаче наследственного материала (хромосомы) от донора к реципиенту, благодаря чему образуется частичная зигота — мерозигота, по терминологии Ф. Жакоба и Е. Вольмана. Отсюда весь процесс был назван меромиксисом.

В переносе информации от одной бактериальной клетки к другой принимают также участие некоторые бактериальные вирусы — бактериофаги. Это явление получило название трансдукции. Оно было открыто в 1952 г. Дж. Ледербергом и Н. Циндером. Для вирусов, способных переносить информацию, характерен специфический путь развития. Проникнув в клетку, они встраиваются в бактериальную хромосому и могут длительное время находиться в ее составе, уподобляясь ее фрагменту. Это состояние является неактивным, т.к. вирусная ДНК не транскрибируется, и, следовательно, не синтезируются вирусные белки и не образуются новые вирусные частицы.

Схема процесса конъюгации у бактерий

Схема процесса конъюгации у бактерий

Передача генетического материала в результате конъюгации у E. coli:
а — передача F-фактора от донора к реципиенту в скрещивании F + xF – ; б — образование линии Hfr в результате интеграции F + — фактора и передачи бактериальных генов от донорных к реципиентным клеткам в ходе скрещивания F + x Hfr.

Такой путь развития называется лизогенным, а интегрированный вирус — провирусом. Бактериальная клетка, несмотря на присутствие в ней вируса, не подвергается лизису. Однако через какое-то время вирус может активизироваться и выходить из состава хромосомы, “прихватывая” близлежащий фрагмент ДНК бактерии. Следом начинается процесс репликации вирусной ДНК и вместе с нею фрагмента хромосомы. Затем синтезируются вирусные белки и идет сборка новых вирусных частиц, в геном которых включается фрагмент бактериальной ДНК. При этом аналогичный объем собственной информации вирус утрачивает. Клетка в итоге погибает, а освободившиеся из нее вирусные частицы заражают другие клетки, внося в них фрагмент ДНК первого хозяина.

Схема процесса трансдукции у E. coli

Схема процесса трансдукции у E. coli

И, наконец, перенос информации в пределах одного генома осуществляется в ходе процесса транспозиции. Транспозиция — это перемещение участка хромосомы из одного места в геноме (локуса) в другой. У бактерий известно два типа транспозирующих элементов: IS-частицы и транспозоны. IS-частицы представляют собой короткие последовательности нуклеотидов, ограниченные концевыми повторами. Они несут информацию о своем перемещении, т.к. в них есть участок, кодирующий структуру фермента транспозазы, осуществляющего вырезание (эксцизию) и встраивание (инсерцию) частицы. Другой информации в IS-частицах нет. В отличие от них транспозоны содержат один или несколько структурных генов, а сложные транспозоны на обоих концах несут еще IS-частицы. Встраивание IS-частиц и транспозонов может вызывать мутации или инактивацию генов, что является одним из возможных путей реорганизации геномов.

Схема строения сложного транспозона

Схема строения сложного транспозона

Центральный район, несущий ген или гены сопротивляемости к тетрациклину, фланкирован прямыми или инвертированными IS-элементами. В свою очередь, IS-элементы имеют собственные терминальные инвертированные повторы.

В состав бактериального генома входит также плазмидная ДНК. Плазмида — это экстрахромосомный носитель наследственной информации. Количество плазмид в клетке непостоянно. Плазмиды бывают мелкие и крупные, однокопийные и мультикопийные. Однокопийные плазмиды обычно встраиваются в бактериальную хромосому и реплицируются вместе с ней. Их называют эписомами. Мультикопийные плазмиды существуют автономно и реплицируются независимо от бактериальной хромосомы. Число копий их различно. Некоторые плазмиды (например, F-фактор) могут попеременно находиться либо в интегрированном, либо в автономном состоянии. Плазмидная ДНК определяет такие свойства бактериальной клетки, как устойчивость к антибиотикам (R-плазмиды), синтез колицинов — веществ, подавляющих рост других типов бактерий (Col-плазмиды) и др. Многие плазмиды обладают способностью к трансмиссии, т.е. к переходу из одной клетки в другую. Внутри плазмид могут находиться транспозоны.

Карта F-фактора и плазмиды R

Карты F-фактора и плазмиды R

В составе бактериального генома часто обнаруживается вирусная ДНК. Вирусные гены по структуре сходны с бактериальными, но у вирусов есть перекрывающиеся гены. Перекрывание генов происходит в том случае, когда одна и та же последовательность ДНК кодирует структуру двух или трех разных белков за счет изменения рамки считывания.

Перекрывающиеся гены были обнаружены Ф. Сенгером в 1977 г. у фага φХ174. Считается, что такая генетическая система является экономичной. Но одновременно мутация в этом локусе может привести к повреждению сразу нескольких генов.

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":

Строение клетки бактерий. Структура

Жёсткая бактериальная клеточная стенка придаёт микроорганизмам определённую форму, а также служит механическим барьером, предохраняющим клетку от воздействия факторов окружающей среды. Клеточная стенка грамположительных бактерий состоит из толстого слоя пептидогликана и клеточной мембраны, в то время как у грамотрицательных микроорганизмов — из трёх слоев: внутренней, внешней мембраны и тонкого слоя пептидогликана.

Клеточная стенка микобактерий также содержит большое количество липидных веществ, некоторые из которых обладают иммунореактивностью.

строение бактерий

По форме бактерии подразделяют на кокки (округлой формы), бациллы (палочковидной формы) и коккобациллы (промежуточная форма). Кроме того, различают изогнутые и спиралевидные бактерии. Наиболее важные структурные компоненты бактериальной клетки:
• капсула — слизистое аморфное образование, состоящее из полисахаридов и защищающее клетку от фагоцитоза и высыхания;
• липополисахариды — мощные стимуляторы выброса цитокинов, защищающие грамотрицательные бактерии от цитолитических компонентов комплемента;

• фимбрии (пили) — тонкие нитевидные белковые органеллы, участвующие в адгезии (прикрепление к клеткам организма хозяина) и расселении микроорганизмов (факторы колонизации). Например, фимбрии (Р-фимбрии) уропатогенных штаммов Escherichia coli избирательно связываются с маннозными рецепторами эпителия мочеточников.
Антигены фимбрии часто обладают иммуногенностью, индивидуальной для каждого штамма (например, Neisseria gonorrhoeae), чем можно объяснить возникновение рецидивирующих инфекций;

строение бактерий

• жгутики — органы движения бактерий, позволяющие микроорганизмам передвигаться в поисках источников питания и проникать через слизистые оболочки организма хозяина. Жгутики (один или несколько) могут располагаться на полюсах (полярное расположение) или по всей поверхности (перитрихи) бактериальной клетки. У некоторых видов (например, у определённых штаммов Treponema) жгутики закреплены внутри клеточной стенки;

• слизь — полисахаридная субстанция, секретируемая некоторыми бактериями и предохраняющая их от воздействия антибиотиков и иммунной системы хозяина;

• споры — метаболически неактивные формы бактерий, образующиеся в неблагоприятных условиях и позволяющие микроорганизмам долгое время выдерживать воздействие механических, температурных и химических факторов окружающей среды (до наступления благоприятных условий).

строение бактерий

Бактерий относят к прокариотам, так как они не имеют ядра и содержат только одну хромосому. Процессы спирализации и суперспирализации ДНК микроорганизмов катализирует ДНК-гираза, что позволяет хранить большой объём хромосомного материала.

Рибосомы микроорганизмов отличаются от рибосом эукариотов, что делает их мишенями для антибактериальных препаратов. Более того, бактерии имеют дополнительную ДНК, содержащуюся в плазмидах. Кроме того, в них часто заключена генетическая информация о факторах патогенности.

Видео строение бактериальной клетки - анатомия бактерии

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Клетка прокариот бактерий и архей

Основные положения:
• В прокариотической клетке плазматическая мембрана окружает один компартмент
• Во всем компартменте присутствует одинаковая водная среда
• В клетке генетический материал занимает компактную область
• Бактерии и археи относятся к прокариотам, однако различаются по своим структурным особенностям

Прокариоты подразделяются на два царства. Раньше считали, что все прокариоты представлены бактериями, но сейчас часть их мы причисляем к археям. Как бактерии, так и археи существуют в форме только одноклеточных организмов (хотя некоторые бактерии в популяции проявляют способность к агрегации).

Область, ограниченная плазматической мембраной, называется цитоплазмой. У прокариот мембрана окружена клеточной стенкой, жесткая структура которой обеспечивает защиту клетки от физических воздействий внешней среды.

На рисунке ниже показано, что в компартменте бактериальной клетки генетический материал расположен компактно, однако не отделен мембраной от содержимого цитоплазмы. К простейшим формам бактерий относится микоплазма, которая, однако, не способна к самостоятельному существованию, поскольку не может производить многие из жизненно необходимых продуктов.

Клетка прокариот бактерий

У бактерий существует один компартмент, хотя внутренние области могут отличаться друг от друга.

Поэтому микоплазма существует внутри других организмов, в которых эти продукты образуются. В геноме микоплазмы содержится всего лишь около 500 генов, которые кодируют лишь минимальное количество продуктов, необходимых для построения клетки. Геном свободноживущих бактерий содержит более 1500 генов и кодирует синтез ферментов метаболизма, необходимых для превращения небольших молекул, а также обеспечивает функционирование более сложного аппарата регуляции экспрессии генов.

Бактерии подразделяются на две группы, дивергенция между которыми произошла, вероятно, около двух миллиардов лет назад. Эти группы называются грамположительные и грамотрицательные, в зависимости от того, приобретают ли клетки окраску при прокрашивании по Граму. К числу наиболее полно охарактеризованных грамотрицательных бактерий относится Escherichia coli, а из грамположительных бактерий наиболее изучена Bacillus subtilis. Окраска развивается при взаимодействии красителя с клеточной стенкой.

У грамположительных бактерий клеточная стенка окружает плазматическую мембрану, и краситель непосредственно взаимодействует с компонентами стенки. У грамотрицательных бактерий существует вторая мембрана, окружающая клеточную стенку. Наличие этой мембраны и различия в составе клеточной стенки препятствуют развитию окраски. Область, находящаяся между наружной и внутренней мембранами, называется периплазматическим пространством. В этом пространстве находятся специфические белки и другие компоненты. Если за критерий компартмента принимать область, ограниченную мембранами, то можно считать, что грамотрицательные бактерии имеют два компартмента.

Однако периплазматическое пространство следует рассматривать как компартмент лишь в аспекте взаимодействия между клеткой и окружающей средой. Это никак не сказывается на основополагающем факте, что синтетическая активность бактериальной клетки сосредоточена в том же компартменте, где находится генетический материал.

Филогенез клеток

Данные филогенетического анализа с использованием современных молекулярных методов позволяют считать,
что организмы можно подразделить на три царства.

Некоторые бактерии могут развиваться, давая начало определенному типу специализированных клеток, что напоминает процесс развития у высших организмов.

Известно много различных видов бактерий, которые возникли на ранних этапах эволюции. Установить их филогенетические взаимоотношения достаточно сложно, поскольку, в отличие от эукариот, ископаемых остатков не сохранилось. Однако современные молекулярные методы, основанные на секвенировании рибосо-мальных РНК, и недавно разработанные приемы полного секвенирования генома привели к революционным выводам относительно происхождения прокариот. Как отдельное царство прокариот были идентифицированы археи.

По виду и строению археи напоминают бактерии: они характеризуются небольшими размерами и представляют собой одноклеточные организмы. Обычно они существуют в экстремальных условиях (например, при высоких температурах), и раньше их ошибочно принимали за бактерии, которые приспособились к таким условиям существования. Как и клетки бактерий, археи представляют собой клетки с одним компартментом и не имеют внутренних мембран.

У них могут проявляться такие же морфологические признаки, как у бактерий, например наличие жесткой стенки или капсулы, окружающей плазматическую мембрану, а также жгутиков, направленных в окружающую среду. Основные отличия наблюдаются на молекулярном уровне, и компоненты клетки археев отличаются от таковых у бактерий. Аппарат, осуществляющий экспрессию генов у археев, больше напоминает аналогичный аппарат клеток эукариот, чем клеток бактерий. Клеточная стенка у них построена из субъединиц, отличающихся от субъединиц клеточной стенки бактерий или растений. Существуют отличия в составе мембранных липидов. По генетической сложности археи больше напоминают свободно-живущих бактерий.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Строение клетки бактерий. Структура

Жёсткая бактериальная клеточная стенка придаёт микроорганизмам определённую форму, а также служит механическим барьером, предохраняющим клетку от воздействия факторов окружающей среды. Клеточная стенка грамположительных бактерий состоит из толстого слоя пептидогликана и клеточной мембраны, в то время как у грамотрицательных микроорганизмов — из трёх слоев: внутренней, внешней мембраны и тонкого слоя пептидогликана.

Клеточная стенка микобактерий также содержит большое количество липидных веществ, некоторые из которых обладают иммунореактивностью.

строение бактерий

По форме бактерии подразделяют на кокки (округлой формы), бациллы (палочковидной формы) и коккобациллы (промежуточная форма). Кроме того, различают изогнутые и спиралевидные бактерии. Наиболее важные структурные компоненты бактериальной клетки:
• капсула — слизистое аморфное образование, состоящее из полисахаридов и защищающее клетку от фагоцитоза и высыхания;
• липополисахариды — мощные стимуляторы выброса цитокинов, защищающие грамотрицательные бактерии от цитолитических компонентов комплемента;

• фимбрии (пили) — тонкие нитевидные белковые органеллы, участвующие в адгезии (прикрепление к клеткам организма хозяина) и расселении микроорганизмов (факторы колонизации). Например, фимбрии (Р-фимбрии) уропатогенных штаммов Escherichia coli избирательно связываются с маннозными рецепторами эпителия мочеточников.
Антигены фимбрии часто обладают иммуногенностью, индивидуальной для каждого штамма (например, Neisseria gonorrhoeae), чем можно объяснить возникновение рецидивирующих инфекций;

строение бактерий

• жгутики — органы движения бактерий, позволяющие микроорганизмам передвигаться в поисках источников питания и проникать через слизистые оболочки организма хозяина. Жгутики (один или несколько) могут располагаться на полюсах (полярное расположение) или по всей поверхности (перитрихи) бактериальной клетки. У некоторых видов (например, у определённых штаммов Treponema) жгутики закреплены внутри клеточной стенки;

• слизь — полисахаридная субстанция, секретируемая некоторыми бактериями и предохраняющая их от воздействия антибиотиков и иммунной системы хозяина;

• споры — метаболически неактивные формы бактерий, образующиеся в неблагоприятных условиях и позволяющие микроорганизмам долгое время выдерживать воздействие механических, температурных и химических факторов окружающей среды (до наступления благоприятных условий).

строение бактерий

Бактерий относят к прокариотам, так как они не имеют ядра и содержат только одну хромосому. Процессы спирализации и суперспирализации ДНК микроорганизмов катализирует ДНК-гираза, что позволяет хранить большой объём хромосомного материала.

Рибосомы микроорганизмов отличаются от рибосом эукариотов, что делает их мишенями для антибактериальных препаратов. Более того, бактерии имеют дополнительную ДНК, содержащуюся в плазмидах. Кроме того, в них часто заключена генетическая информация о факторах патогенности.

Видео строение бактериальной клетки - анатомия бактерии

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Читайте также: