Ученые нашли против коронавируса

Обновлено: 13.05.2024

Дискуссии о вакцинах и вакцинации от COVID-19 не затухают, а, наоборот, становятся всё более горячими. Даже серьёзные медики сомневаются, что у них есть полное представление о составе тех препаратов, которыми делаются прививки. Что же там находится на самом деле?

От чего умирают люди?

Скепсис российских медиков лишь усилился после недавнего заявления академика А. Гинцбурга (Институт Гамалеи, разработчик линейки "Спутников"). Он упомянул какие-то "маркеры" в препарате "Спутник V", которые позволяют определить, кто вакцинацию проходил, а кто лишь купил справку о вакцинации. Об этих "маркерах" в официальной информации о "Спутнике V" ничего не говорится.

Масла в огонь споров и сомнений по вопросу о составе прививочных препаратов добавила конференция учёных-патологоанатомов, которая прошла 20 сентября этого года в Германии в Институте патологии в Ройтлингене (Pathologischen Institut in Reutlingen). В мероприятии, как отмечают СМИ, участвовало от 30 до 40 специалистов, в том числе из Австрии. Ключевыми фигурами были:

  • Профессор, доктор Арне Буркхардт (Prof. Dr. Arne Burkhardt). Возглавлял институт патологии в Ройтлингене в течение 18 лет, после чего работал практикующим патологоанатомом. Профессор опубликовал более 150 статей в специализированных журналах и в медицинских справочниках. Также сертифицировал институты патологического профиля.
  • Профессор, доктор Вальтер Ланг (Prof. Dr. Walter Lang). Работал патологоанатомом в Ганноверской медицинской школе с 1968 по 1985 год. В течение 25 лет возглавлял частный институт патологии в Ганновере.
  • Профессор, доктор Вернер Берггольц (Prof. Dr. Werner Bergholz). Он в отличие от первых двух профессоров не медик, а специалист в области микроэлектроники: 17 лет работал в корпорации Siemens. В последнее время также выступает как эксперт по медицинской статистике.

Скриншот страницы pathologie-konferenz.de/en/

В центре внимания участников конференции были результаты вскрытий восьми умерших после вакцинации от COVID-19, которые проводились в этом году под руководством профессора Арне Буркхардта. Результаты упомянутых вскрытий удивительным образом подтверждают выводы коллеги Арне Буркхардта профессора, доктора Питера Ширмахера (Prof. Dr. Peter Schirmacher). Последний сделал вскрытия более 40 умерших, имевших инфицирование вирусом ковида. Питер Ширмахер уверенно заявил, что около трети из них умерли не от ковида, а от вакцинации против ковида.

Эти заявления были сделаны летом, власти и подконтрольные им СМИ пытались замолчать или опровергать выводы профессора. И вот подоспела конференция патологов в Ройтлингене, которая вновь вскрыла смертельную опасность вакцинаций против ковида.

Они уже в нас

Конференция транслировалась по видеосвязи. На ней были представлены многочисленные фотографии и рисунки, наглядно дополнявшие картину, которую описывали выступавшие патологи.

Анализ тонких тканей умерших проводился с помощью специального, так называемого "темнопольного" микроскопа. Он позволил выявить содержание в тканях посторонних микрочастиц, которые по форме представляют собой явно неживые структуры достаточно правильной геометрической формы. Внешне они выглядят… как микросхемы!

Версий появления таких инородных объектов две. Либо они были введены в кровоток готовыми, либо сформировались в организме человека из наночастиц, содержащихся в вакцине. Случайное попадание посторонних частиц в тело человека исключается, поскольку одни и те же инородные объекты выявлены у всех умерших после вакцинации.

Упомянутый выше профессор, доктор Вернер Берггольц как специалист по микрочипам высказал своё мнение по поводу "открытия" патологов. Он не исключает возможности использования выявленных в тканях умерших частиц в качестве тех самых "маркеров" и "идентификаторов", о присутствии которых в вакцинах высказывали подозрения сторонники так называемой "теории заговора".

Pfizer с дополнениями

Это размышление профессора вполне корреспондирует с мнением тех специалистов, которые пытались и пытаются выявить "маркеры" вакцин без вскрытия, путём углублённого химического и физического изучения самих препаратов. Есть ряд исследований, в которых говорится об обнаружении в составе по крайней мере двух препаратов – Pfizer и Moderna (мРНК-вакцины) – графена (также оксид графена), который никакой медицинской роли не выполняет, но вполне годится на роль "маркера", "идентификатора". Масла в огонь добавило заявление Карен Кингстон (Karen Kingston), бывшей сотрудницы компании Pfizer. Кингстон утверждает, что хотя и в патентах на вакцину Pfizer оксид графена не упоминается, он фигурирует в ряде сопроводительных документов.

Ещё одно направление изучения "пытливыми скептиками" необъявленных производителями вакцин компонентов и свойств препаратов – попытки идентифицировать получивших вакцины людей с помощью специальных технических средств. Та яростная энергия, с которой "Силиконовая мафия" (ведущие IT-корпорации, контролирующие интернет и социальные сети) удаляет публикации подобного рода, также наводят на мысль, что нет дыма без огня.

Трудно поверить, что сказанное на конференции в Ройтлингене по поводу инородных частиц в прививочных препаратах – лишь "дым", который быстро рассеется. Дыма без огня не бывает. Просто этот огонь тщательно скрывают. До того момента, когда начнется вселенский пожар, который уже не остановишь.

Участники конференции приняли резолюцию с призывом к властям Германии, Австрии и других стран начать проводить массовые патологоанатомические исследования умерших после вакцинаций от ковида, обращаться с соответствующими запросами к производителям препаратов и, конечно же, немедленно остановить дальнейший процесс прививок от COVID-19 до полного прояснения вопроса.

Казалось бы, при чём тут Гейтс?

Идея вживления микрочипа в тело человека через прививочный укол вынашивалась мировой элитой давно. В "Prevent Disease.Com" (электронном издании США, специализирующемся на разоблачении планов американской и международной "медицинской мафии") ещё в 2009 году появилась статья "Are Populations Being Primed For Nano-Microchips Inside Vaccines?". Название статьи на русском: "Подталкивается ли население к принятию наночипов, упрятанных в вакцины?". Как отмечалось в указанной статье, ещё в последние годы ХХ века удалось разработать микрочипы нового поколения, основанные на использовании нанотехнологий. Сверхкомпактные (не больше пылинки, радиус порядка 5 микромиллиметра, что примерно в 10 раз меньше радиуса волоса) и недорогие. Вот что, в частности, говорилось в указанной выше статье: "Запущенный Всемирной организацией здравоохранения сценарий с пандемией свиного гриппа как нельзя лучше подходит для пропаганды и принуждения населения добровольно согласиться на введение микрочипов через нановакцины. Всё это будет сделано под лозунгом "высшего блага" для человечества".

Пять лет тому назад была запущена частно-государственная инициатива под кодовым названием "ID2020". Её инициатором был Билл Гейтс, основатель и руководитель IT-корпорации Microsoft, одновременно основатель и руководитель крупнейшего в США благотворительного фонда. Инициатива была поддержана ООН. Суть её проста – провести глобальную цифровую идентификацию населения для того, чтобы мировая элита могла его держать под своим контролем. В первых выступлениях Билла Гейтса как главного энтузиаста тотальной цифровой идентификации он не скрывал, что идентификация через чипизацию является самым простым и надёжным способом решения поставленной задачи.

Но встретив непонимание и даже гневные протесты со стороны ряда политиков и общественных деятелей, Гейтс больше эту идею не озвучивал. И, как считают некоторые эксперты, продолжал её двигать, давая деньги на разработки наночипов, которые станут "бесплатной добавкой" к прививочным препаратам. Решением задачи "наночип и вакцина в одном флаконе" занимались совместно, в тесной кооперации две структуры, находящиеся под контролем Билла Гейтса: упомянутое выше частно-государственное партнёрство "ID2020" и Альянс по вакцинациям GAVI (также частно-государственное партнёрство). Уже в 2018 году все упоминания о наночипах в составе вакцин были удалены с сайтов "ID2020" и GAVI.

Что с того?

Хотя с конференции в Ройтлингене прошло почти два месяца, вы наверняка ничего про неё не слышали – и это яркий пример контроля, установленного "Силиконовой мафией" над каналами распространения информации.

Видео и другие материалы конференции блокируют всеми возможными способами, а там, где нельзя заблокировать, выступают с плакатными "разоблачениями" прозвучавших там "фейков".

Чего только не сделаешь ради воспитания в людях доверия к "спасительным" вакцинам!

В России разработано еще одно лекарство против коронавирусной инфекции. Препарат "Скайвира" получил регистрационное удостоверение Минздрава России, то есть разрешено его применение в нашей стране. Это противовирусный препарат нового поколения, предназначенный для лечения COVID-19 в амбулаторных условиях, сообщает разработчик лекарства.

"Клинические исследования показали выраженное противовирусное действие нового препарата для лечения COVID-19, снижение риска прогрессирования заболевания в более тяжелые формы и ускорение выздоровления. Направленный механизм действия на вирусную протеазу определяет успех лечения вне зависимости от штамма SARS-CoV-2. На данный момент "Скайвира" может быть показана для амбулаторного лечения коронавирусной инфекции легкого или среднетяжелого течения у взрослых", - комментирует главный внештатный специалист по инфекционным болезням Минздрава России, замдиректора НМИЦ фтизиопульмонологии и инфекционных заболеваний Владимир Чуланов.

Фото: Гавриил Григоров/ТАСС

"Медицинское сообщество сходится во мнении, что SARS-Cov-2 в той или иной форме останется с нами навсегда. Наиболее распространенный штамм "стелс-омикрон" практически смешался по симптомам с обычным ОРВИ, однако даже при легком течении коронавирусной инфекции возникают осложнения и постковидный синдром. Будущие пандемии могут стать еще опаснее, уже активно предсказывают "дельтакрон" и другие модификации вируса. Все это диктует необходимость наличия в арсенале врачей широкого спектра препаратов этиотропной терапии, которые бы обеспечивали персонифицированный подход к лечению, учитывающий сопутствующие патологии, лекарственные взаимодействия, длительности манифестации симптомов и та далее, а следовательно, помогали более эффективному лечению", - пояснила директор по новым продуктам компании "Промомед" Кира Заславская.

Эксперт пояснила, что новое лекарство представляет собой комбинацию двух действующих веществ: нирматрелвира и ритонавира. Нирматрелвир является ингибитором (блокатором) вирусной протеазы - фермента, который необходим вирусу для его размножения. Ритонавир выступает как фармакокинетический усилитель, он обеспечивает длительное поддержание необходимой концентрации нирматрелвира в организме. В результате новый препарат полностью блокирует процесс репродукции вируса внутри клетки. Лечение наиболее эффективно, если оно начинается как можно раньше - сразу после лабораторного подтверждения диагноза или в течение пяти дней после появления симптомов COVID-19.

Ученые Пастеровского института Кореи обнаружили два потенциально эффективных препарата для лечения коронавируса.

За основу исследователи взяли 48 препаратов из числа уже одобренных FDA (Управление по санитарному надзору за качеством пищевых продуктов и медикаментов) для других целей. Дело в том, что применение уже одобренных FDA препаратов позволяет быстро запустить их в работу.

По мнению ученых, именно репозиционирование лекарственных средств является единственным возможным вариантом для немедленного решения глобальной проблемы COVID-19, сообщает журнал Американского общества микробиологии Antimicrobial Agents and Chemotherapy.

Фото: iStock

Эксперименты проводились на стандартной модельной клеточной линии, выделенной из клеток почек африканской зеленой мартышки, которые обычно используются для выращивания вирусов для производства вакцин.

Все 48 препаратов прошли скрининг уже на предмет возможности лечения коронавирусной инфекции. Из них были выявлены 24 потенциальных кандидата противовирусных препаратов против инфекции ОРВИ-ков-2, но большинство показали очень низкий микромолярный IC50s.

В результате исследования были выявлены два препарата, эффективно воздействующие на вирус Covid-19, - никлозамид и циклесонид.

Никлозамид - это антигельминтное (противоглистное) средство, противовирусная активность которого была отмечена еще в отношении вирусов SARS и MERS. Но оно имеет существенный недостаток - низкую абсорбцию, которая уменьшает силу действия препарата, при повышении же дозировки усиливается токсичность препарата. Ученые делают вывод, что никлозамид можно будет применить, если будет найден способ доставки препарата непосредственно к клеткам-мишеням.

Циклесонид - это ингаляционный кортикостероид, его применяют для лечения астмы и аллергического ринита, может быть использован как оружие против вирусного белка и эффективное противовоспалительное средство.

"Противовоспалительная активность может играть решающую роль в ослаблении так называемого цитокинового шторма - избыточной иммунной воспалительной реакции, которая зачастую становится причиной смерти пациентов с Covid-19", - сообщают ученые. Как доработать данное средство, чтобы целенаправленно использовать его против Covid-19, - следующая задача для исследователей.

Фото: Chaozzy Lin / Unsplash

В ходе экспериментального лечения пациенты с диагнозом COVID-19 и разной степенью поражения легких полностью выздоровели. В группе добровольцев, принимавших метиленовый синий с целью профилактики, никто не заболел. Значит ли это, что эффективное лекарство от новой болезни наконец найдено?

Долгие месяцы мы наблюдаем за тем, как ВОЗ и представители Big Farma по всему миру ищут эффективное лекарство от COVID-19. Поскольку создание нового препарата — дело не быстрое, а людей по всему миру необходимо лечить, было разрешено применять некоторые медикаменты off-label, то есть не по назначению. И нашумевший гидроксихлорохин, и фавилавир, и многие другие лекарства, которые применялись и применяются для лечения коронавирусной инфекции, создавались для совершенно других болезней. Многие из них трудно купить, а некоторые еще и довольно дорогие.

И вот на фоне непростой ситуации с лечением COVID-19 приходит новость о том, что синий краситель — старое и копеечное медицинское средство (около 8 руб. за дозу), оказывается, может эффективно лечить коронавирусную инфекцию. Вещество убивает сам вирус, восстанавливает многие функции организма и борется с последствиями болезни. Неужели это правда? Научные изыскания на текущий момент (июль 2020 года) говорят — похоже, что так.

Знакомьтесь, метиленовый синий

  • С XIX века и по настоящее время МC применяется как противомалярийный препарат. Он одинаково эффективен против всех видов этого паразитарного заболевания.
  • МС — одно из первых лекарств, которое успешно применяли для лечения психозов, биполярного и нейродегенеративных расстройств, в том числе деменции и болезни Альцгеймера.
  • МС считается эффективным лекарством от метгемоглобинемии — состояния, при котором в крови повышается содержание метгемоглобина (окисленного гемоглобина) и развивается тканевая гипоксия.
  • МС входит в список жизненно-важных препаратов по версии Всемирной организации здравоохранения как антидот при отравлении цианидами, угарным газом и сероводородом.
  • МС — мощный антиоксидант, который способен блокировать окислительный каскад в организме.
  • МС — противовоспалительное средство широкого спектра действия.
  • МС обладает и ярким противовирусным эффектом. В 2018 году было доказано, что метиленовый синий инактивирует в плазме крови вирус Эбола и коронавирус MERS-CoV, вызывающий острый ближневосточный респираторный синдром.

Помимо этого, раствор метиленового синего известен как фотосенсибилизатор. Это группа светочувствительных веществ, действие которых усиливается при воздействии света с соответствующей длиной волны. Фотосенсибилизатор переносит энергию света на кислород, благодаря чему он переходит в так называемое синглетное состояние. Синглетный кислород химически очень активен: он окисляет белки и другие биомолекулы, разрушая внутренние структуры патологических клеток, после чего они становятся нежизнеспособными.

Такое свойство фотосенсибилизаторов позволило успешно применять их в фотодинамической терапии при лечении онкологических заболеваний.

Метиленовый синий против SARS-CoV-2: как родилась идея?

Идея родилась в Институте кластерной онкологии имени Л.Л. Левшина на базе Университетской клинической больницы № 1 Сеченовского университета.

В разгар эпидемии коронавируса, как и многие другие медицинские учреждения в Москве, институт был перепрофилирован под ковидный госпиталь. На тот момент уже существовал список рекомендованных лекарств и протокол лечения одобренный Минздравом России, но сеченовские онкологи все равно задумались о поиске альтернативных методов лечения.

Об эксперте: Артем Ширяев — кандидат медицинских наук, врач-хирург, онколог Института кластерной онкологии имени Л.Л. Левшина Сеченовского университета.

По словам хирурга-онколога Ширяева, никакого страха перед приемом метиленового синего не было — препарат давно зарекомендовал свою безопасность. К тому же ученым нужно было точно рассчитать дозу, способную убивать вирус; понять, как это вещество будет выводиться из организма; и спроектировать лазерную установку для проведения фотодинамической терапии.

Об эксперте: Виктор Лощенов — доктор физико-математических наук, профессор Института общей физики им. А.М. Прохорова РАН.

После того как и оборудование, и протокол лечения были готовы, ученые подали заявку в независимый локальный комитет по этике Первого Московского государственного медицинского университета имени И.М. Сеченова Минздрава России.

Исследование было утверждено 24 апреля 2020, уже на следующий день экспериментальное лечение метиленовым синим было предложено испытать на себе пациентам с коронавирусной инфекцией. Как ни странно, многие охотно согласились.

Как проходило испытание метиленового синего на больных COVID-19

Все добровольцы принимали препарат еженедельно, выпивая индивидуально рассчитанную дозу метиленового синего, разведенного в стакане воды. Фотодинамическая терапия в группе добровольцев не применялась.

Среди 43 пациентов были люди с разной степенью тяжести заболевания и с разной степенью поражения легких: от 25 до 75% по результатам компьютерной томографии. Все они помимо стандартного симптоматического лечения получали метиленовый синий в виде ингаляций и перорально в сочетании с фотодинамической терапией.

С помощью спроектированной светодиодной установки врачи воздействовали красным светом с длиной волны 665 нм на зону носоглотки и груди каждого пациента. При таком воздействии метиленовый синий усиливает свою активность почти в десять раз.

Эффект от лечения наступал быстро. Уже на следующий день у многих пациентов температура спадала с 39°С до 36,6°С. Полностью возвращалось утраченное обоняние. Люди отмечали общее улучшение самочувствия и восстановление функций дыхания. У многих исчезали боли в грудной клетке.

К реанимационным больным возвращалась способность дышать самостоятельно, поднимался уровень сатурации (насыщение крови кислородом). Наблюдалась положительная динамика по КТ — исчезал эффект матового стекла.

После однократного ингаляционного применения метиленового синего с сопутствующей фотодинамической терапией уже на следующий день ПЦР-тест на SARS-CoV-2 у всех пациентов был отрицательным. Вирус был полностью элиминирован из организма.

На 10 и 12 день после госпитализации повторный ПЦР-тест тоже не обнаруживал вирус ни у одного из участников исследования, включая группу добровольцев.

За все время проведения исследования ни у одного из испытуемых не было выявлено никаких побочных эффектов на препарат метиленовый синий.

Как относиться к результатам исследования?

Директор Института кластерной онкологии Сеченовского университета и академик РАН Игорь Решетов считает, что потенциал у метиленового синего любопытный. Возможно, он будет иметь свою точку приложения в лечении острых респираторных инфекций, например, на старте болезни. Но прежде, чем уверенно говорить о каких-то противовирусных эффектах препарата, нужно провести новое полномасштабное исследование на гораздо большей когорте людей.

Об эксперте: Игорь Решетов — доктор медицинских наук, директор Института кластерной онкологии имени Л.Л. Левшина Сеченовского университета. Академик РАН.

Ученые уже подали заявку на грант. Если выиграют, то полученные деньги планируют потратить на организацию совместного исследования с НИИ медицинской приматологии в городе Сочи, где будут дальше изучать воздействие синего красителя на вирусы и иммунную систему на приматах.

Впрочем, российские ученые не единственные, кто поверил в противовирусный потенциал метиленового синего. Исследования, в которых изучается механизм его работы против коронавируса и других респираторных патогенов, сегодня проводятся по всему миру: Иране, Германии, Канаде, США.

Кстати, одно из впечатляющих наблюдений было не так давно сделано во Франции. Там совершенно неожиданно выявили профилактическое противовирусное действие метиленового синего. С момента начала эпидемии COVID-19 в Страсбурге велось наблюдение за 2,5 тыс. французских пациентов, получавших метиленовый синий во время лечения рака. Несмотря на то, что в семьях некоторых из этих людей наблюдались вспышки короновирусной инфекции, никто из 2,5 тыс. онкобольных так и не заболел.

Редакция РБК Тренды не рекомендует самостоятельно принимать медицинский раствор метиленового синего для лечения или профилактики COVID-19. На сегодняшний день не установлена терапевтическая или профилактическая доза препарата для лечения вирусных инфекций. Также нет точных данных о возможных побочных эффектах. Все исследования на сегодняшний день носят экспериментальный характер.

Подписывайтесь на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.


Скрытая угроза

Хотя существуют данные, что SARS-CoV-2 начал распространяться по Европе еще осенью 2019 года, официально первые случаи инфекции были зафиксированы в декабре 2019 года. Вспышку инфекции связали с оптовым рынком морепродуктов Хуанань. У пациентов наблюдались признаки воспаления легких с высокой температурой, кашлем и болями в груди. В тяжелых случаях у больных развивалась одышка, а в легких обнаруживались инфильтраты. Результаты ретроспективных исследований показали, что первые больные появились 8 декабря. 31 декабря официальные лица Китая признали вспышку вирусной пневмонии неясного происхождения и оповестили об этом ВОЗ.

Возбудителя неизвестной болезни выделили из раствора, введенного и извлеченного из легких (эта процедура называется бронхоальвеолярным лаважем) пациентов с тяжелой пневмонией. Китайские ученые секвенировали, то есть установили нуклеотидную последовательность РНК-генома вируса, и установили, что он относится к бетакоронавирусам, но ранее никогда не наблюдался.

3D-модель коронавируса SARS-CoV-2

3D-модель коронавируса SARS-CoV-2

В течение месяца коронавирус массово распространился по всем 34 провинциям Китая, а в конце января ежедневно диагностировались уже тысячи случаев инфекции

30 января ВОЗ объявила распространение коронавируса чрезвычайной ситуацией в области общественного международного здравоохранения. 11 февраля новый вирус был обозначен SARS-CoV-2, а болезнь, которую он вызывает, COVID-19. Ровно через месяц ВОЗ официально объявит глобальную вспышку пандемией.

Стоит заметить, что на самом деле неизвестно, действительно ли SARS-CoV-2 начал распространяться с рынка морепродуктов в Ухане. Некоторые случаи инфекции не были эпидемиологически связаны с рынком, также появляются данные о коронавирусе в образцах, полученных в конце 2019 года от европейцев, перенесших пневмонию. Это указывает на то, что SARS-CoV-2 мог распространиться в Европе, включая Италию и Францию, гораздо раньше, чем это следует из официальных отчетов. Однако пока нельзя исключить ложноположительные результаты, поэтому необходимы дальнейшие ретроспективные исследования с большим количеством образцов, полученных от людей и животных или выделенных из окружающей среды.

Летучая зараза

Летучие мыши оказались носителями вирусов, родственных SARS-CoV-2

Летучие мыши оказались носителями вирусов, родственных SARS-CoV-2

Сайт расщепления PRRA не обнаружен у других вирусов подрода Sarbecovirus, за исключением одного единственного — коронавируса RmYN02 у китайских летучих мышей. Это доказывает, что участок между S1 и S2 был приобретен естественным путем, а не был внедрен в вирус искусственно, как предполагают некоторые конспирологические теории. Ранее ошибочно считалось, что PRRA встречается только у SARS-CoV-2. Ученые предполагают, что эта вставка обеспечивает высокую заразность нового коронавируса, облегчая связывание S1 с клеточным рецептором ACE2, однако это еще необходимо доказать. Пока что гипотеза о влиянии вставки на заразность подтвердилась на клеточных культурах с использованием модифицированных вирусов.

Согласно филогенетическим исследованиям, расхождение между SARS-CoV-2 и родственными вирусами соответствует 20-летней эволюции. Это означает, что коронавирусы летучих мышей могут рассматриваться как предшественники SARS-CoV-2, но не как прямые прародители. Множество родственных вирусов также были выявлены у малайских панголинов, которые были вывезены из Юго-Восточной Азии на юг Китая с 2017 по 2019 год. Сходство этих вирусов с уханьским коронавирусом достигает 92,4 процента. Примечательно, что у инфицированных панголинов наблюдаются клинические признаки заболевания, поэтому они не могут быть естественными резервуарами, а, скорее всего, получили вирусы от других хозяев. Однако пока нет убедительных доказательств, что именно панголины были промежуточными хозяевами.

Иммунный удар

Когда коронавирус проникает внутрь человеческого организма, он использует собственные белки человека для заражения. Как уже говорилось выше, эти белки, называемые протеазами, расщепляют S-белок, позволяя вирусу проникать в клетки. Например, TMPRSS2, или мембранно-связанная сериновая протеаза, производится во многих тканях и часто — вместе с рецептором ACE2. Оба белка встречаются в клетках носовой полости и в легких.

Симптомы у больных варьируют от легких до тяжелой дыхательной недостаточности. Вирус заражает эпителиальные клетки и мигрирует в нижние органы дыхания, где поражает альвеолы. Быстрое размножение SARS-CoV-2 провоцирует быстрый иммунный ответ. Из-за избыточного синтеза и выделения цитокинов развивается цитокиновый шторм, который, в свою очередь, вызывает острый респираторный дистресс-синдром и дыхательную недостаточность. В настоящий момент чрезмерная реакция иммунной системы считается главной причиной смерти от COVID-19. При этом пациенты старшего возраста (более 60 лет) чаще всего страдают от дистресс-синдрома и умирают от дыхательной недостаточности. Однако иногда больные гибнут от отказа других органов, включая сердце, печень и почки.

Электронная фотография SARS-CoV-2

Электронная фотография SARS-CoV-2

Чаще всего у больных развиваются такие симптомы, как лихорадка, усталость и сухой кашель. Реже возникает выделение мокроты, головная боль, кровохарканье, диарея, анорексия, боль в горле, озноб, тошнота и рвота. Также часто сообщается о неврологических симптомах, вроде потери вкуса и обоняния. Инкубационный период длится 1-14 дней, чаще всего около пяти дней, а воспаление легких начинается на восьмой день от начала болезни. Как правило, выздоровление происходит через две недели. Доля легких случаев составляет около 80 процентов, а критических — 5 процентов. Около 2,3 процента людей, поступающих в отделение интенсивной терапии, умирают в среднем за 16 дней от начала заболевания.

Считается, что более всего заразны люди в первую неделю болезни, когда вирусная нагрузка в верхних дыхательных путях достигает максимума. Однако также есть данные о том, что разносчиками вируса являются бессимптомные носители или те, у кого симптомы слабые. Даже необязательно, чтобы пациент чихал или кашлял — передача вируса с микроскопическими капельками жидкости может осуществляться и при разговоре. Был задокументирован случай передачи вируса через глазную поверхность, а также присутствие вируса в фекалиях. Также SARS-CoV-2 способен длительное время выживать на поверхностях, что сохраняет риск заражения в течение длительного времени.

Уже нет сомнений, что SARS-CoV-2 способен проникать в мозг через обонятельный нерв, то есть патоген обладает нейротропизмом

Ранее считалось, что неврологические расстройства при COVID-19 обусловлены сбоями в иммунной системе, так как в спинномозговой жидкости не было обнаружено вирусных частиц. Однако позднее все же выяснилось, что коронавирус способен проникать через гематоэнцефалический барьер и даже поражать дыхательные центры головного мозга, что отчасти объясняет дыхательную недостаточность.

Лекарственное бессилие

Потенциальные препараты против коронавируса, не считая вакцин, можно разделить на несколько групп. Первые предотвращают проникновение патогена в клетку, вторые — ингибиторы репликации — блокируют размножение вируса, а третьи модулируют иммунную систему. Однако, несмотря на большое число различных потенциальных препаратов, ни одно из них не является общепризнанным эффективным средством против SARS-CoV-2.

Дыхание смерти Что породило самые страшные и смертельно опасные коронавирусы

Кровавая жатва Как наука победила самую страшную болезнь в истории человечества

Например, камостат мезилат, одобренный в Японии для лечения панкреатита, относится к первой группе. Показано, что он может блокировать протеазу TMPRSS2 в организме модельных мышей, защищая животных от смертельного исхода инфекции. Хлорохин и гидроксихлорохин, используемые против малярии и аутоиммунных заболеваний, препятствуют связыванию вируса с рецептором клетки, однако клинических данных об их эффективности недостаточно. Более того, есть данные, что, наоборот, те, кто принимал хлорохин и гидроксихлорохин, сталкиваются с более высоким риском остановки сердца. Нежелательные побочные эффекты заставили FDA отозвать разрешение на экстренное применение этих препаратов для лечения COVID-19.

К ингибиторам репликации относятся такие препараты, как ремдесивир, фавилавир, лопинавир и ритонавир. Исследования показали, что ремдесивир, который разрабатывали для лечения лихорадки Эбола, может ускорить выздоровление пациентов на пару дней, но на риск смерти не влияет. Несмотря на то что врачи продолжают назначать его больным, эксперты признали, что нет доказательств эффективности препарата для лечения госпитализированных пациентов, и не рекомендуют его дальнейшее применение.

Клинические исследования фавилавира показали, что препарат уменьшал степень поражения легких и сокращал время снижения вирусной нагрузки. Однако тестирования проводились на небольшой выборке пациентов, и необходимы крупномасштабные рандомизированные контролируемые испытания. Что касается лопинавира и ритонавира, в рандомизированном исследовании, проведенном в марте 2020 года с участием 1596 пациентов, не наблюдалось значительного положительного эффекта.

Белковый рецептор ACE2 используется вирусом для заражения клетки

Белковый рецептор ACE2 используется вирусом для заражения клетки

Кортикостероид дексаметазон относится к иммуномодуляторам и обладает противовоспалительным и иммунодепрессивным действием. Показано, что он снижает смертность примерно на одну треть у госпитализированных пациентов с COVID-19, которым была проведена инвазивная искусственная вентиляция легких, и на одну пятую у пациентов, получавших кислород. Однако пациентам, которым не проводилась респираторная поддержка, препарат не давал никаких преимуществ. Антитела тоцилизумаб и сарилумаб способны ослабить цитокиновый шторм и помогают бороться с тяжелой формой COVID-19.

Эксперименты in vitro показали, что SARS-CoV-2 чувствителен к интерферонам типа I, которые являются многообещающими кандидатами для терапии как SARS, так и COVID-19.

Вакцины против мутантов

Эксперты по всему миру сходятся во мнении, что пандемию удастся остановить лишь к концу 2021 года благодаря вакцинации. Однако сам SARS-CoV-2 и его мутантные формы могут еще долго циркулировать среди тех, кто не привился, а таких потенциально может быть очень много. Незаинтересованность общественности в вакцинах стала результатом популярных, но бредовых конспирологических теорий, распространяющихся через интернет. Не последнюю роль сыграло антивакцинаторство, а также скептическое отношение к вакцинам как к политическому инструменту.

Вирусные частицы SARS-CoV-2

Вирусные частицы SARS-CoV-2

В настоящее время ученые знают о новом коронавирусе и болезни, вызываемой им, гораздо больше, чем в начале пандемии, хотя до сих пор остаются пробелы, которые необходимо заполнить. Например, до сих пор не совсем ясно, как коронавирус взаимодействует с иммунной системой и каким образом можно избежать губительных для организма цитокиновых штормов. Также непонятно, превратится ли COVID-19 в конечном итоге в легкое заболевание, мало отличающееся от простуды или удастся его победить окончательно.

Вероятнее всего, в будущем человечество ожидают и другие пандемии, причем необязательно коронавирусные

Люди уничтожают среду обитания диких животных, которые являются естественными резервуарами для потенциально патогенных для человека вирусов и бактерий. Из-за активной вырубки лесов и освоения болотистых территорий масштабные вспышки новых инфекций могут стать намного более частыми, чем раньше.

Читайте также: