Выживаемость бактерий и вирусов

Обновлено: 25.04.2024

Главная задача биологии — это развитие представлений у человека о живых организмах, о многообразии видов, обо всех закономерностях развития живых существ, а также об их взаимодействии с окружающей природой. Предмет основы безопасности жизнедеятельности (ОБЖ) позволяет получить знания и умения, которые помогут сохранить жизнь и здоровье в опасных ситуациях. Эти ситуации всегда возникают неожиданно, но, тем не менее, большинство из них предсказуемы и к ним можно подготовиться заранее. ОБЖ учит нас предвидеть возможные опасности и минимизировать потери от той или иной ситуации. Сегодня мы сталкиваемся с новым видом вирусной опасности COVID-19,о котором поговорим с точки зрения биологии и ОБЖ.

Что такое вирус?

Вирус — это неклеточный инфекционный агент. Сегодня нам известно около 6 тысяч различных вирусов, но их существует несколько миллионов. Вирусы не похожи друг на друга и могут иметь как форму сферы, спирали, так и форму сложного асимметричного сплетения. Размеры вирусов варьируются от 20 нм до 300 нм.

Как устроен вирус?

В центре агента находится генетический материал РНК или ДНК, вокруг которого располагается белковая структура — капсид.
Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой, т.е. жировой структурой, которая защищает их от изменений окружающей среды.

Вирусолог Дэвид Балтимор объединил все вирусы в 8 групп, из которых некоторые группы вирусов содержат 1-2 цепочки ДНК. Другие же содержат 1 цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов производит себя в различных органеллах зараженной клетки.

Вирусы имеют определенный диапазон хозяев, т.е. он может быть опасен для одних видов и абсолютно безвреден для других. Например, оспой болеет только человек, а чумкой только некоторые виды плотоядных. Вирус не способен выжить сам по себе, поэтому активируется только в хозяйской клетке, используя ее ресурсы и питательные вещества. Цель вируса — создание множества копий себя, чтобы инфицировать другие клетки!

Вирусы

Как вирус попадает в организм?

  • через физические повреждения (например, порезы на коже)
  • путём направленного впрыскивания (к примеру, укус комара)
  • направленного поражения отдельной поверхности (например, при вдыхании вируса через трахею)
  • к эпителию слизистых оболочек (это например вирус гриппа)
  • к нервной ткани (вирус простого герпеса)
  • к иммунным клеткам (вирус иммунодефицита человека)

Биология. Рабочая тетрадь. 9 класс

Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сбором белка вируса. Этот процесс называется репликацией. И его основная цель — это захват территории. Во время репликации генетический материал вируса смешивается с генами клетки хозяина — это приводит к активной мутации самого вируса, а также повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает уже новые клетки, в то время как инфицированная ранее клетка продолжает производство.

Выход вируса

Вирус создал множество собственных копий, клетка оказывается изнуренной из-за использования ее ресурсов. Больше вирусу клетка не нужна, поэтому клетка часто погибает и новорожденным вирусам приходится искать нового хозяина. Это и есть заключительная стадию жизненного цикла вируса.

Скорость распространения вирусной инфекции

Размножение вирусов протекает с исключительно высокой скоростью: при попадании в верхние дыхательные пути одной вирусной частицы уже через 8 часов количество инфекционного потомства достигает 10³, а концу первых суток − 10²³.

Вирусная латентность

Как вирус распространяется?

  • воздушно-капельный (кашель, чихание)
  • с кожи на кожу (при прикосновениях и рукопожатиях)
  • с кожи на продукты (при прикосновениях к пище грязными руками вирусы могут попасть в пищеварительную и дыхательную системы)
  • через жидкие среды организма (кровь, слюну и другие)

Почему с вирусами так тяжело бороться?

Сегодня людям уже удалось победить некоторые вирусы, а некоторые взять под жесткий контроль. Например, Оспа (она же черная оспа). Болезнь вызывается вирусом натуральной оспы, передается от человека к человеку воздушно-капельным путем. Больные покрываются сыпью, переходящей в язвы, как на коже, так и на слизистых внутренних органов. Смертность, в зависимости от штамма вируса, составляет от 10 до 40 (иногда даже 70%), На сегодняшний день вирус полностью истреблен человечеством.

Кроме того, взяты под контроль такие заболевания, как бешенство, корь и полиомиелит. Но помимо этих вирусов существует масса других, которые требуют разработок или открытия новых вакцин.

Коронавирус

Виновником эпидемии, распространяющейся сегодня по миру, стал коронавирус, вирусная частица в 0,1 микрона. Свое название он получил благодаря наростам на своей структуре, своеобразным шипам. Внутри вируса спрятан яд, с помощью которого он подчиняет себе зараженный организм. Этот вирус воздействует не только на человека, но и на птиц, свиней, собак и летучих мышей. В настоящий момент выделяют от 30 до 39 разновидностей коронавирусной инфекции. Но для человека патогенно всего 6. И как любой другой вирус COVID-19 мутирует.

симптомы и признаки.jpg

К наиболее распространенным симптомам COVID-19 относятся повышение температуры тела, сухой кашель и утомляемость. К более редким симптомам относятся боли в суставах и мышцах, заложенность носа, головная боль, конъюнктивит, боль в горле, диарея, потеря вкусовых ощущений или обоняния, сыпь и изменение цвета кожи на пальцах рук и ног. Как правило, эти симптомы развиваются постепенно и носят слабо выраженный характер. У некоторых инфицированных лиц болезнь сопровождается очень легкими симптомами.

Сколько же может жить этот вирус вне организма? Все зависит от типа вируса и от той поверхности, на которую вирусы попали. В качестве примера было рассмотрено 3 вируса, по которым велись исследования. Изучали время, на которое может задерживаться вирус на различных поверхностях. Данные приведены в таблице.

Таблица

Поскольку пока не изобретено вакцины от COVID-19, в целях защиты от инфекции самым важным для нас является соблюдение гигиены.

Гигиена — раздел медицины, изучающий влияние жизни и труда на здоровье человека и разрабатывающая меры (санитарные нормы и правила), направленные на предупреждение заболеваний, обеспечение оптимальных условий существования, укрепление здоровья и продление жизни.

Сегодня следует соблюдать определенные правила гигиены:

  • Соблюдение режима труда и отдыха, не допускающего развития утомления и переутомления.
  • Выполнение условий, обеспечивающих здоровый и полноценный сон (свежий воздух, отсутствие шума, удобная постель, оптимальная продолжительность).
  • Правильное здоровое питание в соответствии с потребностями организма.
  • Комфортный микроклимат в жилище (температура, влажность и подвижность воздуха, естественная и искусственная освещенность помещений).
  • Содержание в чистоте тела и тщательный уход за зубами.
  • Спокойное и корректное поведение в конфликтных ситуациях.

профилактика.jpg

Сколько живут бактерии и вирусы вне организма человека?

Все зависит от типа бактерии или вируса и от поверхности, на которой они находятся. Большинству болезнетворных бактерий, вирусов и грибков для жизни требуются влажные условия, поэтому то, как долго они могут прожить вне организма, зависит от влажности воздуха и поверхности.

Простудные вирусы

Доказано, что вирусы-возбудители простуды могут жить на поверхностях внутри помещений в течение свыше семи дней. Говоря в общем, вирусы живут дольше на гладких (водостойких) поверхностях, таких как нержавеющая сталь и пластик, чем на пористых поверхностях, например, на тканях и материях. Хотя вирусы-возбудители простуды могут жить на поверхностях несколько дней, их способность вызывать заболевание начинает снижаться после 24 часов.

На поверхности рук большинство простудных вирусов живут гораздо меньше. Некоторые из них выживают всего несколько минут, но 40% риновирусов, распространенных возбудителей простуды, находясь на руках в течение часа, все еще остаются заразными.

Респираторный синцитиальный вирус (РСВ), другой вирус, похожий на возбудителей простуды, который иногда вызывает тяжелые заболевания у детей, может жить на обеденном столе до шести часов, на ткани и бумаге — 30-45 минут, на коже — до 20 минут.

Вирусы гриппа

Вирусы гриппа передаются через руки и заражают организм человека. На твердых поверхностях они могут жить в течение 24 часов. На ткани вирусы гриппа могут прожить всего лишь 15 минут.

Подобно простудным вирусам, на руках вирусы гриппа живут гораздо меньше. После того, как вирус гриппа пробыл на руках человека пять минут, его концентрация резко снижается.

Вирусы гриппа могут жить в летающих в воздухе капельках влаги на протяжении нескольких часов, а в низкой температуре они живут еще дольше.

Вирус парагриппа, возбудитель крупа у детей, может жить в течение 10 часов на твердых поверхностях и до четырех часов — на мягких.

Кишечные инфекции

Возбудителями кишечной инфекции могут быть различные микроорганизмы, в том числе такие бактерии, как кишечная палочка, сальмонелла, клостридиум диффициле и кампилобактер, а также такие вирусы, как норовирус и ротавирус.

Сальмонелла и кампилобактер могут жить примерно 1-4 часа на твердых поверхностях и тканях, в то время как норовирус и клостридиум диффициле могут жить гораздо дольше. Согласно одному исследованию, клостридиум диффициле может сохранять жизнеспособность на протяжении пяти месяцев. Норовирус может прожить несколько дней и даже недель на твердых поверхностях.

Когда человека, зараженного норовирусом, тошнит, вирус распространяется по воздуху в мелких каплях влаги. Эти капли затем оседают на поверхностях, и таким образом вирус разносится, поэтому очень важно тщательно протирать все поверхности, если кто-то в вашей семье заразился норовирусом.

Чтобы предотвратить распространение кишечной инфекции, регулярно и тщательно мойте руки, в особенности после того, как вы сходили в туалет. Также необходимо поддерживать хорошую гигиену питания.

МРЗС (мецитиллин-резистентный золотистый стафилококк)

Золотистый стафилококк, бактерия, вызывающая инфекции МРЗС, может жить на поверхностях несколько дней и даже недель. Бактерии МРЗС могут жить на поверхностях дольше, чем некоторые бактерии и вирусы, так как они лучше обходятся без влаги. Обычно бактерии МРЗС дольше живут на твердых поверхностях, нежели на мягких.

Герпес

Вирусы герпеса из болячек вокруг рта могут жить в течение четырех часов на пластике, трех — на ткани и двух — на коже. Если у вас появилась герпетическая лихорадка, не трогайте пузырьки. Если вы все же прикоснулись к ним, например, чтобы нанести крем от герпеса, обязательно мойте руки сразу же после этого.

Ограничение распространения инфекции

Избежать заражения не всегда возможно, но можно снизить риск этого и предотвратить заражение других людей. Для этого:

  • Регулярно мойте руки, в особенности после посещения туалета, перед контактом с едой и после кашля, чихания или сморкания.
  • Поддерживайте чистоту в доме, особенно если один из членов вашей семьи заболел.
  • Стирайте ткани, на которые могли попасть бактерии или вирусы, при температуре не менее 60 ºC с моющим средством, содержащим отбеливатель.

Другие статьи по темам:

Все материалы сайта были проверены врачами. Однако, даже самая достоверная статья не позволяет учесть все особенности заболевания у конкретного человека. Поэтому информация, размещенная на нашем сайте, не может заменить визита к врачу, а лишь дополняет его. Статьи подготовлены для ознакомительных целей и носят рекомендательный характер. При появлении симптомов, пожалуйста, обратитесь к врачу.

Самые опасные бактерии вокруг нас

Герои романов 19 века умирали от дифтерии, воспаления легких, туберкулеза и гонореи. Вооружившись антибиотиками, человечество отпраздновало победу над бактериальными инфекциями. Действительно, заболеть сегодня ангиной, пневмонией или, скажем, циститом неприятно, но не смертельно. Все это однозначно излечимо… Или было излечимо до недавнего времени?

С некоторых пор все чаще регистрируются случаи банальных инфекций, которые не поддаются антибиотикам. Не экзотические микробы, а обычные обитатели кожи и слизистых оболочек, городских тротуаров и сельских луж превращаются в супербактерии, так как становятся неуязвимыми для существующих лекарств. Только крепкий иммунитет способен сдерживать их агрессию, но такая защита срабатывает не у всех.

Эволюция на ладони

Инкубатором для супер устойчивых бактерий является каждый из нас. Микрофлора кишечника, кожи, слизистых оболочек и полостей тела — это миллионы подопытных бактерий, которых мы регулярно подвергаем самым разным экспериментам. Мы пьем антибиотики для профилактики и лечения, получаем их в составе курятины, мясных блюд и заплесневелого сыра. Наш богатый внутренний мир от этого не редеет, а лишь меняет состав: выживают те бактерии, которым удается приспособиться к меняющимся условиям среды. Это эволюция, которая происходит прямо в нашем организме.

Ацинетобактерии

Вы слышали про микробов, которые умеют перерабатывать нефть? Это ацинетобактерии (Acinetobacter). Они колонизируют кожу у 44,8% здоровых людей, прекрасно живут в воде, почве и сухой пыли. О них узнали всего несколько десятков лет назад, но за это время ацинетобактерии успели наделать много шума в научном кругу.

Дело в том, что они умеют мастерски приспосабливаться к меняющимся условиям и очень быстро эволюционируют. Эти урбанистические монстры научились одинаково хорошо расщеплять полиуритан с подошвы ваших туфель, фенол городского воздуха и человеческие ткани. Многие ацинетобактерии устойчивы к действию мыла, поэтому их не просто смыть. Бактерия легко проникает сквозь кожу и слизистые, быстро заселяет раны, выделяет токсины и умеет прятаться внутри макрофагов (иммунных клеток) и клеток эпителия легких. Выработав устойчивость к антибиотикам, ацинетобактерии уже несколько лет признаны супербактериями. Результат их агрессии: гнойные поражения ран и мягких тканей, пневмония, инфекции системы, кровавая диарея у новорожденных, сепсис и менингит. При заражении штаммами, резистентными к антибиотикам, смертность может достигать 70%.

Золотистый стафилококк

Второй монстр, которого мы взрастили на собственном теле — золотистый стафилококк (Staphylococcus aureus). Этого микроба часто высевают в лабораторных мазках у сопливых и кашляющих детей, тем самым чрезвычайно пугают мамочек. Хотя не менее 40–50% взрослых здоровых людей носят его на крыльях носа, а также коже других частей тела и слизистой носоглотки и не испытывают никаких проблем.

Золотистые стафилококки — не самые покладистые соседи и временами вызывают ангину, гайморит, фурункулы, панариций, мастит, а в тяжелых случаях — если иммунитет совсем не справляется — пневмонию и менингит. Токсины стафилококка, попав в молоко (например, при мастите у коровы), превращают его в яд. Даже если простерилизовать молоко, пищевого отравления избежать не удастся, так как токсины не разрушаются при кипячении.

Пока этот микроб боялся антибиотиков, лечение любой стафилококковой инфекции не представляло труда. Но в годах прошлого века стафилококк впервые вышел контроля и вызвал волну тяжелых заболеваний по всему миру. Устойчивость стафилококка постепенно расширяется на все известные антибиотики: сначала пенициллины и цефалоспорины, затем ванкомицин, макролиды, аминогликозиды и тетрациклины. Сегодня есть стафилококки, которые обладают мультирезистентностью — их ничто не берет.

Кишечная палочка

E. coli — кишечная палочка — кто её не знает? Это полезный микроб, проживающий в толстой кишке каждого из нас и синтезирующий витамин К. На колониях кишечной палочки тренируются и микробиологи. С её помощью создают инсулин, её добавляют в пробиотики. Способность вырабатывать устойчивость к антибиотикам у этого микроба просто зашкаливает. В эксперименте, кишечной палочке подкинули небольшую дозу тетрациклина. E. coli понюхала, чихнула и выработала устойчивость не только к тетрациклину, но и еще к семи препаратам, с которыми ранее не контактировала. Пару лет назад ученые наблюдали , как всего за 10 дней кишечная палочка полностью заселила здоровенную чашку с питательной смесью, в которую подмешали концентрированный антибиотик. Сегодня уже доказано существование кишечных палочек, устойчивых даже к антибиотикам резерва.

Убийцы от рождения

К числу самых опасных бактерий в мире официально причислены не только условно мирные обитатели организма, но и весьма распространенные в окружающей среде болезнетворные бактерии. Они от природы созданы убивать, и успешно делали это до изобретения антибиотиков. Теперь, приспосабливаясь к лекарствам, они вновь стали опасными врагами человечества.

Гонорея — одна из самых известных венерических болезней — легко и непринужденно лечилась несколькими уколами антибиотика. В прошлом году в Англии, Японии, Испании и Франции были выявлены случаи гонореи, которую не удалось вылечить имеющимися антибиотиками. Сейчас устойчивый ко многим распространенным антибиотикам гонококк высевается при обследовании больных из более чем 77 стран мира, в том числе и России.

Возбудители сибирской язвы, холеры, чумы и других особо опасных инфекций сегодня ушли на страницы учебников по истории и медицине. Однако их эволюция тоже продолжается. Антибиотики в больших количествах выбрасываются в окружающую среду из городской канализации и с животноводческих ферм. Там, в почве и воде, формируется второй по важности инкубатор супербактерий.

Наше поколение привыкло всецело полагаться на всесильного врача и мощную таблетку. Забота о здоровье все чаще сводится к тому, чтобы регулярно обследоваться и своевременно лечиться. Современный человек перестал выздоравливать сам — теперь он лечится даже от пустяковых болезней. Комфорт и доступность медицинских услуг усыпляют наш иммунитет. Хорошо, когда на помощь всегда может прийти современная медицина. А если она окажется бессильной?

Другие статьи по темам:

Все материалы сайта были проверены врачами. Однако, даже самая достоверная статья не позволяет учесть все особенности заболевания у конкретного человека. Поэтому информация, размещенная на нашем сайте, не может заменить визита к врачу, а лишь дополняет его. Статьи подготовлены для ознакомительных целей и носят рекомендательный характер. При появлении симптомов, пожалуйста, обратитесь к врачу.

Кем приходятся друг другу представителя микромира – вирусы и бактерии? Можно ли считать их врагами, друзьями, кровными родственниками или партнерами? Разберемся в их взаимодействии и роли в человеческом организме.

Чаще всего человек знакомится с вирусами и бактериями в сезон простуд. Острые респираторные инфекции – одни из самых распространенных заболеваний в мире. Большая часть таких болезней возникает из-за вирусов и бактерий, попадающих в организм человека вместе с вдыхаемым воздухом и оседающих на слизистых оболочках носа или рта 1 .

Для понимания процесса заражения можно привести аналогию с любым публичными заведением, которое в нашем случае является организмом человека. Через открытые двери в заведение попадают различные гости – вирусы и бактерии. Некоторые бактерии являются интеллигентной публикой и вреда не приносят, а некоторым вход категорически запрещен: они могут спровоцировать настоящий конфликт. Что касается вирусов – это, по большей части, бандиты. Не стоит ждать от них ничего хорошего.

Так в чем заключается основная разница между ними? Для начала нужно четко понять, что они представляют собой, а уже на основании этого определить разницу и принцип воздействия на организм.

Что такое вирусы

Вирус – это мельчайший организм, который способен существовать и размножаться только внутри живых клеток. Во внешней среде вирус находится в микрочастицах биологического материала, но размножается исключительно в клетках живых существ. Другими словами, вирус не активен до тех пор, пока не окажется внутри человека 2 .

А попадает он туда следующим образом:

  • Воздушно-капельным путем, как и большинство респираторных инфекций
  • При употреблении грязной воды, с пищей, при несоблюдении правил гигиены
  • От матери к будущему ребенку
  • Контактным – при тесном контакте через кожу или слизистые оболочки
  • Парентеральным способом – минуя желудочно-кишечный тракт, посредством инъекций

После попадания в организм вирус вначале прикрепляется к клетке, затем доставляет в нее свой биологический геном, теряет оболочку и только потом размножается. После размножения вирус покидает клетку, а инфекционный агент распространяется вместе с кровью, продолжая тотальное заражение. Вирусы могут подавлять иммунную систему 2 .

Что такое бактерии

Бактерия представляет собой полноценный, пусть и одноклеточный организм. Она умеет размножаться благодаря делению, чем активно и занимается в природе или внутри человека 3 .

Далеко не все бактерии вызывают инфекционные заболевания. Некоторые приносят пользу и живут в органах тела. Например, молочнокислые или бифидобактерии, которые обитают в кишечнике и желудочном тракте, активно участвуют в процессе жизнедеятельности человека и фактически составляют часть его иммунной защиты 3 .

Попадание бактерий в организм повторяет пути вирусов. Но размножение бактерий осуществляется чаще вне клетки, чем внутри нее. Список болезней, которые развиваются в результате их проникновения в тело человека, чрезвычайно велик. Бактерии могут вызывать 3 :

  • Респираторные болезни (чаще всего их вызывают стафилококки и стрептококки)
  • Инфекции ЖКТ (провоцируются кишечной палочкой и энтерококками)
  • Поражения нервной системы (бывают вызваны менингококками)
  • Ряд заболеваний репродуктивной системы и др.

Размножаясь, они распространяются по кровяному руслу, что приводит к генерализации инфекции и клиническому утяжелению состояния больного. Бактерии также в состоянии подавлять иммунную систему, из-за чего организму становится тяжелее противостоять вирусам 3 .

Чем отличается вирус от бактерии

Таким образом, и вирусы, и бактерии способны поражать организм, вызывая инфекционное заражение. Ключевая разница между ними – в механизме размножения. Вирусы не могут размножаться во внешней среде, поэтому им необходимо внедриться в клетку. Бактерии размножаются делением и могут жить во внешней среде длительное время, дожидаясь попадания в организм человека. Соответственно, механизмы для противобактериальной и противовирусной защиты также должны различаться 4 .

Подведем краткие итоги. Отличия вируса от бактерии таковы 4 :

  • Размер и форма существования. Вирус – простейшая жизненная форма, бактерия – одноклеточное живое существо.
  • Жизнедеятельность. Вирус существует только внутри клетки и заражает её, после чего происходит размножение (клонирование). Бактерия живет полноценной жизнью, размножаясь делением, а организм для неё – лишь благоприятное место существования.
  • Форма проявления. Вирусам свойственно проявлять себя повышением температуры тела, общей слабостью, мышечными и суставными болями. Бактерии проявляют себя нездоровыми выделениями (гнойные или как специфический налет).

Типичные вирусные заболевания: ОРВИ, грипп, герпес, корь и краснуха. Также к ним относятся энцефалит, гепатиты, оспа, ВИЧ и др.

Типичные бактериальные заболевания: сифилис, коклюш, холера, туберкулез, дифтерия, брюшной тиф и кишечные инфекции, ИППП.

Бывает, что и те, и другие вызывают одно заболевание совместно. Подобный симбиоз требует особого лечения. Примером могут служить: синусит, тонзиллит, менингит, пневмония и другие заболевания 5 .

Борьба с вирусами и бактериями

Иммуномодулятор ИРС®19 станет помощником на пути к здоровому и крепкому иммунитету. В его составе заключена смесь лизатов бактерий, которые представляют собой специально выделенные части бактерий-вредителей. Лизаты активируют иммунную систему и направляют ее на борьбу с бактериями и вирусами. Препарат обладает высоким уровнем безопасности и может назначаться для профилактики инфекций у взрослых и детей старше 3-х месяцев. Он был многократно протестирован и показал отличные результаты в борьбе с инфекциями, в т.ч с ОРВИ 6 .


Обзор

Человеческая Т-клетка (синий), атакованная ВИЧ (желтый). Вирус ориентирован на Т-клетки, которые играют важную роль в иммунной реакции организма против вторжений, таких как бактерии и вирусы.

Автор
Редакторы


Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?

Схема трехдоменной классификации

Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA).

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].

Строение мембранных липидов бактерий и архей

Рисунок 2. Строение мембранных липидов бактерий (справа) и архей (слева)

Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Сценарий вирусного мира

Рисунок 3. Сценарий вирусного мира в гипотезе доклеточного происхождения вирусов подпись

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).

Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса

Схематическое представление структуры модели эволюции РНК-подобной системы

Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте.

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами .

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.

Схема общей трансдукции

Рисунок 5. Схема общей трансдукции

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].

Роль гена Peg10 в эмбриональном развитии

Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24].

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).

Горизонтальный перенос генов в рамках трехдоменного дерева

Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.

Читайте также: