Методы гжх при отравлении

Обновлено: 26.04.2024

Методы токсикологического скрининга (анализа) и их эффективность

Использовать токсикологический анализ без понимания его ограничений опасно. Токсикологический скрининг характеризуется хорошей специфичностью. Специфичность пропорциональна процентной доле пациентов, в организме которых токсичные вещества присутствуют, но результат анализа отрицательный (хорошая специфичность означает, что тест дает мало ложноположительных результатов).

Однако чувствительность его низка, поскольку многие случаи присутствия токсичных веществ не выявляются. Чувствительность — это доля больных с данным токсином, для которых получен положительный результат (если она высока, ложноотрицительных результатов мало).

Диагностическая ценность отрицательного результата (т. е. доля истинно отрицательных результатов среди всех отрицательных) составляет около 40 %. Для повышения чувствительности и диагностической ценности скрининга необходимы совершенствование аналитических методов, тесное взаимодействие между врачами и лабораториями, правильное взятие проб и понимание ограничений и ценности конкретных тестов.

Ограничения методов токсикологического скрининга

Для скрининга токсинов токсикологические лаборатории применяют несколько методов, поскольку единственного точного и недорогого метода для выявления всех токсинов не существует. Эти методы различаются по стоимости, точности, сложности, скорости и специфичности. Надежность отдельного теста зависит от опыта аналитика, оборудования, метода и числа обрабатываемых заказов.

Трудности возникают в связи с изменениями биологических жидкостей при их хранении, переносом веществ из пробирки в пробирку и стандартами, используемыми при анализе.

Порча колонок для газожидкостной хроматографии приводит к появлению неизвестных остатков, а ионизация газов чревата расщеплением химикатов. Кроме того, лабильные метаболиты подвергаются химическим изменениям, зависящим от используемой аналитической методики. Таким образом, для правильного использования лаборатории необходимо знакомство с ее специфическими потребностями, процессами и ограничениями. Для интерпретации результатов токсикологического скрининга важно знать ответы на следующие вопросы.
1. Какой метод используется для каждой категории веществ и какова его специфичность?
2. Какие вещества выявляются при токсикологическом скрининге и какие его варианты доступны (например, специально для агентов, вызывающих кому, эпилептические припадки; психоактивных средств)?
3. Какая информация необходима в запросе?
4. Какие образцы лучше всего подходят для конкретного анализа?
5. Какие тесты дают количественные и качественные результаты и насколько быстро?

Сравнение аналитических методов токсикологического скрининга

Чаще всего используемая в качестве аналитического метода хроматография основана на разделении веществ при прохождении потока жидкости или газа через твердую (стационарную) фазу, содержащую неизвестный агент. Иммуноанализ (иммуноферментный, радиоиммуноанализ) чувствителен, но менее специфичен, чем хроматография или масс-спектрометрия.

Оценка лабораторных методов в токсикологии

Тонкослойная хроматография

Тонкослойная хроматография (ТСХ) — это простой и недорогой метод качественного скрининга, не дающий количественных результатов. Разделение фракций основано на различной абсорбции веществ при прохождении растворителя через стационарный сорбент (обычно кремниевую кислоту или оксид алюминия). Каждому веществу соответствуют характерное расстояние миграции после нанесения образца на исходную линию и применения соответствующего растворителя. Анализ занимает 2 ч, а его результаты должны интерпретироваться опытным персоналом.

В продаже имеются системы ТСХ для токсикологического скрининга, которые требуют меньше профессиональной подготовки, чем необходима для стандартной ТСХ.

Ультрафиолетовая спектрофотометрия

Ультрафиолетовая спектрофотометрия (УФС) — это простой, экономичный количественный метод, позволяющий выявить токсические уровни ацетаминофена и салицилата в крови, а также повышенный уровень фенотиазина в моче.

Однако точность результата сильно снижается при потреблении нескольких веществ, что в настоящее время ограничивает применимость данного анализа.

Газожидкостная хроматография

Газожидкостная хроматография (ГЖХ) — очень точный и специфичный метод, но требующий довольно много времени. Жидкий или растворенный образец впрыскивают в колонку, он переводится в пар нагреванием. Поток инертных газов пофракционно изгоняет образец из колонки, и появление на выходе различных фракций регистрируется химическими детекторами.

Сравнение времени удержания и площади пиков с известными стандартами позволяет идентифицировать вещества и определить их количества. Этим методом эффективно определяется уровень в крови летучих жидкостей (метанола, этанола, этиленгликоля).

Жидкостная хроматография высокого давления (разрешения)

Жидкостная хроматография высокого разрешения (ЖХВР) по скорости, специфичности и стоимости сходна с газожидкостной хроматографией, но позволяет определить не только летучие вещества. Высокое давление (7000—42 000 кПа) облегчает движение образца через колонку, что способствует разделению сложных соединений, включая конъюгированные метаболиты.

Радиоиммуноанализ

Радиоиммуноанализ самый медленный и дорогой метод, но зато очень точный. Смешивание известных количеств специфичного к веществу антитела с этим же веществом, несущим радиоактивную метку, позволяет анализировать осадок с помощью счетчиков гамма-квантов. Уровень излучения обратно пропорционален количеству выявляемого вещества. Этот тест прекрасно подходит для определения крайне низких концентраций, например каннабинолов, ЛСД, дигоксина, параквата.

Иммуноферментный анализ

Быстрый, дорогой и простой метод, обеспечивающий среднюю точность и специфичность результатов, иммуноферментный анализ (ИФА), основан на том, что количество присутствующего в образце вещества пропорционально степени ингибирования реакции фермента с субстратом. Известное количество искомого вещества метят, химически присоединяя к ферменту.

Специфичные к веществу антитела, добавляемые к образцу, связывают этот комплекс, снижая тем самым его ферментативную активность. Свободное вещество в составе образца конкурирует с тем, что помечено ферментом, а это ограничивает вызываемую антителом инактивацию последнего.

Ферментативная активность, коррелирующая с концентрацией вещества в образце, измеряется по изменению поглощения, происходящему при каталитическом действии фермента на субстрат. ИФА предпочтительнее радиоиммунологического метода в неотложных ситуациях благодаря своей простоте и быстроте получения данных о концентрации токсичного агента.

При его использовании не нужна сложная стадия разделения, обязательная для последнего метода. В мелких лабораториях применяется система st (single test) с компактным спектрофотометром, а в крупных больницах — система dan (drugs of abuse), предназначенная специально для случаев токсикомании. Отрицательный результат, впрочем, не исключает присутствия очень малых количеств искомого агента.

Перекрестные реакции с антителами, способные привести к ложноположительному результату, дают следующие вещества:

• наркотики:
маковое семя,
декстрометорфан,
хлорпромазин,
дифеноксилат;

• амфетамины:
эфедрин,
фенилэфрин,
псевдоэфедрин,
N-ацетилпрокаинамид,
хлорохин,
прокаинамид;

• фенциклидин:
декстрометорфан,
дифенгидрамин,
хлорпромазин,
доксиламин,
тиоридазин.

Самая распространенная причина ложноположительного результата — перекрестная реакция антитела с веществом, которое по структуре сходно с искомым агентом, например с компонентами макового семени, включающими опийные алкалоиды, что дает положительный результат скрининга на опиаты.

Хорошо известна также способность противозастойных капель для носа, в частности эфедрина и фенилпропаноламина, показывать при скрининге мочи положительную реакцию на амфетамины. К такому ложноположительному результату может привести перекрестная реакция антител с L-эфедрином и фенметразином.

Анализ мочи на наркотические вещества

Причины ложноотрицательного результата токсикологического скрининга

Причины ложноотрицательных результатов анализа можно разделить на три категории: технологические недостатки, токсикокинетические свойства и предумышленная порча или подмена образца.

Технологические недостатки:
— метод не рассчитан на данное вещество,
— вещество структурно не соответствует прототипу данного класса соединений, например фентанилу,
— низкое качество лабораторной работы.

Токсикокинетические свойства:
— большой объем распределения,
— короткое время полувыведения.

Предумышленная порча или подмена образца:
— предъявление "чистой" мочи другого человека,
— предъявление не мочи, а другой жидкости,
— питье большого количества жидкости,
— прием диуретиков,
— добавка в мочу отбеливателя, едкого агента, "чая" из желтокорня, лимонного сока, соли, мыла или уксуса.

Атомно-абсорбционная спектрофотометрия

Атомно-абсорбционная спектрофотометрия — это обычный метод выявления неорганических агентов (например, свинца, ртути, таллия, кадмия), плохо подходящий для токсикологического скрининга, поэтому большинство его вариантов тяжелых металлов не выявляют.

Плазменная атомно-эмиссионная спектроскопия с индуктивным сопряжением (ПАЭС-ИС) — новый метод, позволяющий проводить одновременный анализ нескольких элементов и полезный в промышленности. Он определяет содержание в одной пробе 17 элементов: алюминия, бария, кадмия, хрома, меди, железа, лантана, свинца, марганца, молибдена, никеля, платины, серебра, стронция, олова, титана и цинка.

Газовая хроматография — масс-спектрометрия

Вероятно, лучшим методом, определяющим присутствие в пробе определенного вещества, является газовая хроматография с масс-спектрометрией (ГХ-МС), однако высокие капитальные и эксплуатационные издержки ограничивают применение его эталонными центрами.

К веществам, знание уровня которых в крови может быть полезным для лечения отравлений, относятся ацетаминофен, салицилаты, карбоксигемоглобин, метгемоглобин, метанол, этиленгликоль, литий, железо, паракват, дигоксин, теофиллин и фосфорорганические соединения. Специфическое применение этой информации рассмотрено в соответствующих отдельных статьях на сайте (рекомендуем пользоваться формой поиска на главной странице сайта).

Гипокальциемия при отравлении

Гипокальциемия особенно часто наблюдается при отравлении фтороводородом, оксалатами, этиленгликолем и органическими соединениями олова, причем нередко у больных в критическом состоянии, сочетающемся с сердечно-сосудистой или нервно-мышечной недостаточностью.

Кристаллурия при отравлении

Кристаллурия может быть следствием отравления сульфаниламидами, четыреххлористым углеродом, примидоном и ампициллином. Массивная кристаллурия обычно связана с потреблением оксалатов или этиленгликоля.

Анализ пота при отравлении

К веществам, выявляемым путем анализа "пятен пота", относятся кокаин, героин, метамфетамин, фенциклидин и тетрагидроканнабинол.

Тесты у постели больного с отравлением

К тестам на присутствие в организме отравляющего вещества, не требующим отправки образцов в лабораторию, относятся определение специфического запаха, скрининг хлоридом трехвалентного железа на салицилаты (положительный результат подтверждает их наличие в сыворотке), нитропруссидная проба на кетоны (Ацетест), визуальное исследование крови на эритроцитарные аномалии, микроскопическое исследование мочи на кристаллы, проверка с помощью тест-палочки на острый некроз скелетных мышц или гемолиз, диагностическое использование налоксона, проверка тест-палочкой на этанол, применение индикаторной трубки для выявления этанола, метанола и изопропанола, а также некоторые другие тесты, ценность которых еще недостаточно изучена (на ацетаминофен, цианид, салицилат свинца, теофиллин — описаны в отдельных статьях на сайте (рекомендуем пользоваться формой поиска на главной странице сайта).

ЭКГ при отравлении

Электрокардиомониторинг полезен для обнаружения фармакогенных аритмий и нарушений калиевого, магниевого и кальциевого баланса.

Запахи у больных с отравлением

Учебное видео расшифровки ЭКГ при электролитных нарушениях

Видео расшифровки ЭКГ при электролитных нарушениях

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "N"

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Методы токсикологического скрининга (анализа) и их эффективность

Использовать токсикологический анализ без понимания его ограничений опасно. Токсикологический скрининг характеризуется хорошей специфичностью. Специфичность пропорциональна процентной доле пациентов, в организме которых токсичные вещества присутствуют, но результат анализа отрицательный (хорошая специфичность означает, что тест дает мало ложноположительных результатов).

Однако чувствительность его низка, поскольку многие случаи присутствия токсичных веществ не выявляются. Чувствительность — это доля больных с данным токсином, для которых получен положительный результат (если она высока, ложноотрицительных результатов мало).

Диагностическая ценность отрицательного результата (т. е. доля истинно отрицательных результатов среди всех отрицательных) составляет около 40 %. Для повышения чувствительности и диагностической ценности скрининга необходимы совершенствование аналитических методов, тесное взаимодействие между врачами и лабораториями, правильное взятие проб и понимание ограничений и ценности конкретных тестов.

Ограничения методов токсикологического скрининга

Для скрининга токсинов токсикологические лаборатории применяют несколько методов, поскольку единственного точного и недорогого метода для выявления всех токсинов не существует. Эти методы различаются по стоимости, точности, сложности, скорости и специфичности. Надежность отдельного теста зависит от опыта аналитика, оборудования, метода и числа обрабатываемых заказов.

Трудности возникают в связи с изменениями биологических жидкостей при их хранении, переносом веществ из пробирки в пробирку и стандартами, используемыми при анализе.

Порча колонок для газожидкостной хроматографии приводит к появлению неизвестных остатков, а ионизация газов чревата расщеплением химикатов. Кроме того, лабильные метаболиты подвергаются химическим изменениям, зависящим от используемой аналитической методики. Таким образом, для правильного использования лаборатории необходимо знакомство с ее специфическими потребностями, процессами и ограничениями. Для интерпретации результатов токсикологического скрининга важно знать ответы на следующие вопросы.
1. Какой метод используется для каждой категории веществ и какова его специфичность?
2. Какие вещества выявляются при токсикологическом скрининге и какие его варианты доступны (например, специально для агентов, вызывающих кому, эпилептические припадки; психоактивных средств)?
3. Какая информация необходима в запросе?
4. Какие образцы лучше всего подходят для конкретного анализа?
5. Какие тесты дают количественные и качественные результаты и насколько быстро?

Сравнение аналитических методов токсикологического скрининга

Чаще всего используемая в качестве аналитического метода хроматография основана на разделении веществ при прохождении потока жидкости или газа через твердую (стационарную) фазу, содержащую неизвестный агент. Иммуноанализ (иммуноферментный, радиоиммуноанализ) чувствителен, но менее специфичен, чем хроматография или масс-спектрометрия.

Оценка лабораторных методов в токсикологии

Тонкослойная хроматография

Тонкослойная хроматография (ТСХ) — это простой и недорогой метод качественного скрининга, не дающий количественных результатов. Разделение фракций основано на различной абсорбции веществ при прохождении растворителя через стационарный сорбент (обычно кремниевую кислоту или оксид алюминия). Каждому веществу соответствуют характерное расстояние миграции после нанесения образца на исходную линию и применения соответствующего растворителя. Анализ занимает 2 ч, а его результаты должны интерпретироваться опытным персоналом.

В продаже имеются системы ТСХ для токсикологического скрининга, которые требуют меньше профессиональной подготовки, чем необходима для стандартной ТСХ.

Ультрафиолетовая спектрофотометрия

Ультрафиолетовая спектрофотометрия (УФС) — это простой, экономичный количественный метод, позволяющий выявить токсические уровни ацетаминофена и салицилата в крови, а также повышенный уровень фенотиазина в моче.

Однако точность результата сильно снижается при потреблении нескольких веществ, что в настоящее время ограничивает применимость данного анализа.

Газожидкостная хроматография

Газожидкостная хроматография (ГЖХ) — очень точный и специфичный метод, но требующий довольно много времени. Жидкий или растворенный образец впрыскивают в колонку, он переводится в пар нагреванием. Поток инертных газов пофракционно изгоняет образец из колонки, и появление на выходе различных фракций регистрируется химическими детекторами.

Сравнение времени удержания и площади пиков с известными стандартами позволяет идентифицировать вещества и определить их количества. Этим методом эффективно определяется уровень в крови летучих жидкостей (метанола, этанола, этиленгликоля).

Жидкостная хроматография высокого давления (разрешения)

Жидкостная хроматография высокого разрешения (ЖХВР) по скорости, специфичности и стоимости сходна с газожидкостной хроматографией, но позволяет определить не только летучие вещества. Высокое давление (7000—42 000 кПа) облегчает движение образца через колонку, что способствует разделению сложных соединений, включая конъюгированные метаболиты.

Радиоиммуноанализ

Радиоиммуноанализ самый медленный и дорогой метод, но зато очень точный. Смешивание известных количеств специфичного к веществу антитела с этим же веществом, несущим радиоактивную метку, позволяет анализировать осадок с помощью счетчиков гамма-квантов. Уровень излучения обратно пропорционален количеству выявляемого вещества. Этот тест прекрасно подходит для определения крайне низких концентраций, например каннабинолов, ЛСД, дигоксина, параквата.

Иммуноферментный анализ

Быстрый, дорогой и простой метод, обеспечивающий среднюю точность и специфичность результатов, иммуноферментный анализ (ИФА), основан на том, что количество присутствующего в образце вещества пропорционально степени ингибирования реакции фермента с субстратом. Известное количество искомого вещества метят, химически присоединяя к ферменту.

Специфичные к веществу антитела, добавляемые к образцу, связывают этот комплекс, снижая тем самым его ферментативную активность. Свободное вещество в составе образца конкурирует с тем, что помечено ферментом, а это ограничивает вызываемую антителом инактивацию последнего.

Ферментативная активность, коррелирующая с концентрацией вещества в образце, измеряется по изменению поглощения, происходящему при каталитическом действии фермента на субстрат. ИФА предпочтительнее радиоиммунологического метода в неотложных ситуациях благодаря своей простоте и быстроте получения данных о концентрации токсичного агента.

При его использовании не нужна сложная стадия разделения, обязательная для последнего метода. В мелких лабораториях применяется система st (single test) с компактным спектрофотометром, а в крупных больницах — система dan (drugs of abuse), предназначенная специально для случаев токсикомании. Отрицательный результат, впрочем, не исключает присутствия очень малых количеств искомого агента.

Перекрестные реакции с антителами, способные привести к ложноположительному результату, дают следующие вещества:

• наркотики:
маковое семя,
декстрометорфан,
хлорпромазин,
дифеноксилат;

• амфетамины:
эфедрин,
фенилэфрин,
псевдоэфедрин,
N-ацетилпрокаинамид,
хлорохин,
прокаинамид;

• фенциклидин:
декстрометорфан,
дифенгидрамин,
хлорпромазин,
доксиламин,
тиоридазин.

Самая распространенная причина ложноположительного результата — перекрестная реакция антитела с веществом, которое по структуре сходно с искомым агентом, например с компонентами макового семени, включающими опийные алкалоиды, что дает положительный результат скрининга на опиаты.

Хорошо известна также способность противозастойных капель для носа, в частности эфедрина и фенилпропаноламина, показывать при скрининге мочи положительную реакцию на амфетамины. К такому ложноположительному результату может привести перекрестная реакция антител с L-эфедрином и фенметразином.

Анализ мочи на наркотические вещества

Причины ложноотрицательного результата токсикологического скрининга

Причины ложноотрицательных результатов анализа можно разделить на три категории: технологические недостатки, токсикокинетические свойства и предумышленная порча или подмена образца.

Технологические недостатки:
— метод не рассчитан на данное вещество,
— вещество структурно не соответствует прототипу данного класса соединений, например фентанилу,
— низкое качество лабораторной работы.

Токсикокинетические свойства:
— большой объем распределения,
— короткое время полувыведения.

Предумышленная порча или подмена образца:
— предъявление "чистой" мочи другого человека,
— предъявление не мочи, а другой жидкости,
— питье большого количества жидкости,
— прием диуретиков,
— добавка в мочу отбеливателя, едкого агента, "чая" из желтокорня, лимонного сока, соли, мыла или уксуса.

Атомно-абсорбционная спектрофотометрия

Атомно-абсорбционная спектрофотометрия — это обычный метод выявления неорганических агентов (например, свинца, ртути, таллия, кадмия), плохо подходящий для токсикологического скрининга, поэтому большинство его вариантов тяжелых металлов не выявляют.

Плазменная атомно-эмиссионная спектроскопия с индуктивным сопряжением (ПАЭС-ИС) — новый метод, позволяющий проводить одновременный анализ нескольких элементов и полезный в промышленности. Он определяет содержание в одной пробе 17 элементов: алюминия, бария, кадмия, хрома, меди, железа, лантана, свинца, марганца, молибдена, никеля, платины, серебра, стронция, олова, титана и цинка.

Газовая хроматография — масс-спектрометрия

Вероятно, лучшим методом, определяющим присутствие в пробе определенного вещества, является газовая хроматография с масс-спектрометрией (ГХ-МС), однако высокие капитальные и эксплуатационные издержки ограничивают применение его эталонными центрами.

К веществам, знание уровня которых в крови может быть полезным для лечения отравлений, относятся ацетаминофен, салицилаты, карбоксигемоглобин, метгемоглобин, метанол, этиленгликоль, литий, железо, паракват, дигоксин, теофиллин и фосфорорганические соединения. Специфическое применение этой информации рассмотрено в соответствующих отдельных статьях на сайте (рекомендуем пользоваться формой поиска на главной странице сайта).

Гипокальциемия при отравлении

Гипокальциемия особенно часто наблюдается при отравлении фтороводородом, оксалатами, этиленгликолем и органическими соединениями олова, причем нередко у больных в критическом состоянии, сочетающемся с сердечно-сосудистой или нервно-мышечной недостаточностью.

Кристаллурия при отравлении

Кристаллурия может быть следствием отравления сульфаниламидами, четыреххлористым углеродом, примидоном и ампициллином. Массивная кристаллурия обычно связана с потреблением оксалатов или этиленгликоля.

Анализ пота при отравлении

К веществам, выявляемым путем анализа "пятен пота", относятся кокаин, героин, метамфетамин, фенциклидин и тетрагидроканнабинол.

Тесты у постели больного с отравлением

К тестам на присутствие в организме отравляющего вещества, не требующим отправки образцов в лабораторию, относятся определение специфического запаха, скрининг хлоридом трехвалентного железа на салицилаты (положительный результат подтверждает их наличие в сыворотке), нитропруссидная проба на кетоны (Ацетест), визуальное исследование крови на эритроцитарные аномалии, микроскопическое исследование мочи на кристаллы, проверка с помощью тест-палочки на острый некроз скелетных мышц или гемолиз, диагностическое использование налоксона, проверка тест-палочкой на этанол, применение индикаторной трубки для выявления этанола, метанола и изопропанола, а также некоторые другие тесты, ценность которых еще недостаточно изучена (на ацетаминофен, цианид, салицилат свинца, теофиллин — описаны в отдельных статьях на сайте (рекомендуем пользоваться формой поиска на главной странице сайта).

ЭКГ при отравлении

Электрокардиомониторинг полезен для обнаружения фармакогенных аритмий и нарушений калиевого, магниевого и кальциевого баланса.

Запахи у больных с отравлением

Учебное видео расшифровки ЭКГ при электролитных нарушениях

Видео расшифровки ЭКГ при электролитных нарушениях

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

- Также рекомендуем "N"

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Анализ мочи для диагностики наркотиков, психоактивных веществ

Сведения о скрининге на злоупотребление психоактивными веществами (ПВЗ) и его диагностике обобщены в таблице ниже.

- Анализы мочи для диагностики отравления психоактивными веществами (ПВЗ). Анализы мочи на психоактивные вещества (ПВЗ) включают два типа процедур: скрининговые (первичные) и окончательные (подтверждающие).

Для скрининга обычно используют быстрые и недорогие методы. Окончательные анализы призваны хотя бы частично отсеять ложноположительные результаты.

- Проверка на рабочем месте. Обязательные нормативы Федеральных программ по наркологической проверке на рабочих местах требуют применения для скрининга иммуноаналитических методов, а для подтверждения результатов — газовой хроматографии или масс-спектрометрии.

Скрининг и диагностика потребления наркотиков, психоактивных веществ

- Скрининговые анализы. Показания. Вескими основаниями для проведения скрининга на психоактивные вещества (ПВЗ) являются заметное ухудшение или отклонения в поведении, настроении, рассудительности и мышлении (галлюцинации, паранойя, шизофрения) у молодого человека; ухудшение успеваемости или прогулы учебы/работы; антиобщественное поведение, например хроническая ложь, воровство и неуважение чужих прав; неоднократное насилие в отношении людей или посягательства на чужую собственность; серьезные депрессивные или биполярные расстройства настроения; попытки самоубийства; необъяснимое утомление у человека; хронический вазомоторный ринит; припадки или кома неясной этиологии; недавнее окончание лечения по поводу зависимости от марихуаны, кокаина или опиатов.

Взятие проб. Непрерывный контроль. Путь пробы мочи для анализа на психоактивные вещества (ПВЗ) необходимо документировать с момента ее забора на протяжении всей транспортировки в этикетированной запечатанной таре и во время анализа. Если пробу берут без наблюдения, необходимо сразу же зарегистрировать рН, температуру и плотность. У свежей мочи температура должна составлять 33—36 °С, а рН — от 4,6 до 8,0.

Хранение. Пробу мочи можно хранить при комнатной температуре до 3 сут или в холодильнике до 1 нед, а для длительного хранения (недели — месяцы) лучше всего замораживать при температуре —6,6 °С или ниже. Если планируется анализ на ЛСД, мочу надо держать в темном месте.

Наблюдение после анализа. Если проба оказалась положительной, окончательные выводы следует делать, исходя из результатов дополнительных периодических или нерегулярных анализов.

Пороговый уровень. Пороговый уровень устанавливается изготовителем аналитического оборудования и показывает, при какой выявленной концентрации вещества высока статистическая вероятность того, что результат не является ложноположительным. Результаты ниже стандартного порогового уровня считаются отрицательными, даже если более чувствительный метод или иной пороговый уровень отнес бы их к положительным.

Пороговый уровень устанавливают с учетом чувствительности конкретного аналитического метода, перекрестных реакций, накопленного опыта и методики, выбранной для подтверждения результатов (обычно это газовая хроматография — масс-спектрометрия).

Пороговые уровни наркотиков в моче

- Окончательные анализы. Стандартным методом окончательного токсикологического анализа считается газовая хроматография — масс-спектрометрия (ГХ/МС). Она способна определить большинство ПВЗ и их метаболиты с чувствительностью до нескольких нанограммов на миллилитр. Положительный результат иммуноанализа подтверждают самыми точными методами ГХ/МС, включающими ионизацию путем электронной бомбардировки, трехионный мониторинг и определение ионных соотношений.

Если речь не идет о судебно-медицинской экспертизе, результаты тонкослойной хроматографии (TCX) можно подтверждать жидкостной хроматографией высокого разрешения (ЖХВР) или газожидкостной хроматографией (ГЖХ). ГЖХ полезна для выявления в моче и крови алкоголя и летучих вдыхаемых веществ. При ЖХВР ультрафиолетовый, флюоресцентный или электрохимический детектор, установленный на выходе из колонки, позволяет измерять концентрации психоактивных веществ (ПВЖ) с большими чувствительностью и специфичностью, чем ТСХ. При ГЖХ также применяют разные типы детекторов, например азотно-фосфорный.

Перекрестно реагирующие вещества. Широко распространенные вещества, дающие перекрестные реакции при скрининговом иммуноанализе, приведены в таблице ниже.

Ложная диагностика наркотиков, психоактивных веществ в моче
Анализ мочи на наркотики и психоактивные вещества

- Время получения результатов. Время выявления психоактивными веществами (ПВЗ) в моче при использовании их пороговых уровней указано в таблице ниже. Пределы обнаружения обычных психоактивными веществами (ПВЗ) приведены в таблице ниже. Проблемы, с которыми приходится сталкиваться при анализе проб мочи у работников промышленности, источники ошибок при таких исследованиях обобщены в ниже. Способы фальсификации сдаваемых на анализ проб рассмотрены в следующей отдельной статье на сайте.

Пробы мочи, направляемые на анализ психоактивных веществ (ПВЗ), необходимо проверять на креатинин. Если его уровень ниже 4,0 ммоль/л, отрицательные результаты по психоактивными веществами (ПВЗ) могут быть недействительными.

Сроки выявления наркотиков и психоактивных веществ в моче
Пределы выявления психоактивных веществ

Рекомендации по скринингу мочи на психоактивные вещества:

1. Определите, нужен ли скрининг. Оправдан ли он интересами здравоохранения или производственными проблемами, связанными со злоупотреблением психоактивными веществами?

2. Определите цель скрининга. Должен ли анализ выявлять только официально запрещенные средства или будет частью более общей программы по борьбе со злоупотреблением психоактивными веществами, включая алкоголь, безрецептурные или рецептурные лекарства?

3. Определите необходимый тип анализа. Какие вещества он должен выявить?

4. Определите частоту скрининга. Проводить ли его при приеме на работу, периодически или в связи с несчастными случаями и авариями на производстве? В настоящее время, по-видимому, юридически почти решен вопрос о необходимости проведения скрининга мочи при приеме на работу; однако остаются существенные проблемы, касающиеся рандомизированного периодического скрининга.

5. Выберите подходящую лабораторию, способную обеспечить бесперебойное обслуживание и проведение окончательных (подтверждающих) анализов при положительных результатах первичного скрининга.

6. Составьте протокол работы в случае положительных результатов анализа еще до внедрения программы скрининга. (Неразумно дожидаться результатов скрининга при приеме на работу, чтобы потом обсуждать, как поступить с кандидатом на место.)

7. Определите стоимость программы, учитывая возможные расходы на окончательные анализы.

8. Помните о не учтенных скринингом веществах, способных влиять на работоспособность, например об алкоголе, рецептурных или безрецептурных лекарствах.

9. Помните об ограничениях скрининга. Возможны ложноположительные результаты. В идеале скрининг должен сочетаться с более широкой программой борьбы со злоупотреблением психоактивными средствами, в том числе с просветительской работой среди служащих и руководителей предприятия.

10. Будьте реалистами. Скрининг не решает проблемы злоупотребления психоактивными веществами.

Источники ошибок при анализе мочи на вызывающие зависимость психоактивные вещества:

• Подмена проб мочи проверяемым (мочой не употребляющего психоактивных веществ человека или яблочным соком)

• Порча пробы путем разведения водой, хлоридом натрия, уксусом, нашатырным спиртом, гидрохлоритом натрия или мыльным раствором

• Помехи, обусловленные применением отпускаемых без рецепта лекарств или потреблением пищевых продуктов, особенно при проверке на амфетамины (симпатомиметики) и опиаты

• Ошибки, связанные со сбором или хранением проб (грязная посуда, неотфильтрованная мутная моча, хранение при комнатной температуре в течение 4 сут и более, действие яркого света (разрушает ЛСД)

• Технические ошибки, связанные с ненадежностью оборудования, его редкой калибровкой, нехваткой положительных и отрицательных контрольных проб, недостаточной "прогретостью" техники, избытком растворителя (тонкослойная хроматография), колебаниями температуры (иммуноанализ с ферментативным усилением), повторным использованием материала из прошлых положительных проб

• Административные ошибки, связанные с анализом не тех проб, неправильной маркировкой, неаккуратной регистрацией результатов, неверным написанием фамилий

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Судебно-медицинская экспертиза отравления – комплексное всестороннее исследование. В диагностике отравлений, особое место занимает судебно-химический (химико-токсикологический) анализ. Химико-токсикологический анализ (ХТА) соединений, представляющих токсикологический интерес, достаточно трудный процесс, особенно применительно к биологическим объектам, что связано с многочисленностью и разнохарактерностью как анализируемых биологических матриц, так и токсических веществ. Кроме того, последние, вследствие их метаболизма, весьма лабильны в живых организмах.

  • - изолирование ядовитых и сильнодействующих веществ из биологического материала;
  • - очистку выделенных веществ;
  • - качественное и, по возможности, количественное определение выделенных соединений.

В зависимости от природы и свойств химических веществ в токсикологической химии применяют различные методы изолирования веществ нейтрального, кислотного или щелочного характера.

Очистку выделенных из биологического материала химических соединений проводят методами возгонки и перекристаллизации, экстракции и тонкослойной хроматографии.

Методы качественного определения включают в себя капельный анализ, микрокристаллический анализ и наиболее распространенные хроматографические методы - тонкослойную и газовую хроматографию.

При оценке результатов ХТА следует иметь ввиду, что отдельные вещества (например, алкалоиды группы опия) определяются лишь при значительной концентрации их в биологических жидкостях, быстро разлагаются и выводятся из организма (например, большая часть морфина разлагается и выводится из организма за 8 часов). Другие же соединения могут содержаться в биологических объектах более длительное время. Например, барбитураты определяются в течение нескольких дней после приема. Результат ХТА зависит, прежде всего, от времени забора биологических сред (в первую очередь это относится к диагностике алкогольного и наркотического опьянения), а также от метода их забора. Например, при диагностике наркотического опьянения на исследование должна в первую очередь доставляться моча, как наиболее информативный материал. Кроме того, важно количество имеющегося биологического материала.

Широкое распространение в ХТА получили хроматографические методы и их сочетания между собой и другими методами анализа, в частности сочетание методов тонкослойной хроматографии (ТСХ) и газожидкостной хроматографии (ГЖХ).

Метод ТСХ (являющийся предварительным) предполагает разделение веществ в общих системах растворителей на хроматографические зоны. Каждая зона, в которой были обнаружены те или иные соединения, затем исследуется в частных системах растворителей или анализируется с последующим элюированием веществ методом ГЖХ (являющимся подтверждающим).

ГЖХ - один из наиболее распространенных методов, применяемых в судебной химии для анализа отравляющих веществ, обладающий высокой чувствительностью и надежностью определения искомых веществ в биологическом материале.

Сегодняшняя практика такова, что наибольшее количество экспертиз приходится на определение этилового алкоголя газохроматографическим методом в крови и моче. Исследования проводятся по утвержденной Минздравом СССР методике этилнитритным методом, основанном на переведении этилового спирта в эфир - этилнитрит.

Для определения "летучих ядов" (спиртов - метилового, этилового, пропилового, бутилового, амилового спиртов и их изомеров; хлорорганических соединений, ароматических углеводородов, альдегидов и кетонов, углеводородов, входящих в состав бензина и керосина) в биологических объектах применяются аналитические колонки с неподвижными жидкими фазами различной полярности (трикрезилфосфат, реоплекс-400, сквалан, ПЭГ-600), нанесенные на инертные носители в количестве 10-15%.

Исследования проводятся на газовом хроматографе "Цвет-165" с детектором по ионизации в пламени. Колонки - металлические, размером 300х0,3 см. Температура колонок-70°С, испарителя-150°С, скорость газа-носителя - 30-40 мл/мин. Выбранные сорбенты позволяют в одном термическом режиме определять сразу все вышеназванные вещества (за исключением метилового и изо-пропилового спиртов, которые определяются при более низкой температуре колонки).

Методика газохроматографического анализа состоит в следующем: биологические объекты помещаются во флаконы объемом 10 мл, добавляется 10% -ная фосфорно-вольфрамовая кислота (для осаждения белков) и безводный сульфат натрия или меди (для уменьшения парциального давления паров воды) герметично закрываются и нагреваются на кипящей водяной бане I5 минут. Парогазовая фаза объемом 2 мл отбирается шприцем из флаконов и вводится в испаритель хроматографа. Идентификация веществ проводится по относительным временам удерживания и не менее, чем на двух колонках.

Наиболее часто встречаются отравления этиловым спиртом и его суррогатами. По серьезности последствий интоксикации этиловый спирт занимает одно из первых мест, нередко являясь косвенной причиной смерти. В нашей практике встречались случаи обнаружения в биологических объектах (в основном во внутренних органах трупов) пропилового, изо-бутилового, изо-амилового спиртов - сивушных масел, входящих в состав самогона.

Метиловый спирт поражает нервную и сосудистую системы. Типично при отравлении метиловым спиртом поражение зрительного нерва и сетчатки. Смертельная доза - 30-100 г. Метиловый спирт из организма выводится медленнее, чем этиловый, в крови его можно обнаружить на 3-4 день после приема. Однако случаи отравления метиловым спиртом нечасты.

Хлорорганические соединения являются хорошими растворителями жиров, лаков, смол и широко используются в промышленности и в быту. По силе действия 1,2-дихлорэтан занимает первое место среди галогенпроизводных. В основном он действует на центральную нервную систему и кроветворный аппарат, смерть может наступить от отека легких. Смертельная доза при приеме внутрь - 15-50 мл. Отравления хлорорганическими соединениями (особенно дихлорэтаном) нередки, в наибольшей концентрации они обнаруживаются в жировой ткани, головном мозге и моче.

Довольно часто в нашей практике встречаются случаи отравления растворителями, широко используемыми в быту, в состав которых входят ароматические углеводороды, ацетон, обладающие наркотическим действием. Наиболее часто при отравлениях обнаруживаются ксилол, толуол, ацетон, бутилацетат, бутиловый спирт, бензол - в различных соотношениях друг с другом и в разном количественном содержании. Так, например, при вдыхании клея "Момент" в крови обнаруживаются ацетон и толуол.

При отравлении фосфорорганическими соединениями хроматографическим методом проводится исследование на наличие керосина, в котором они растворяются. В подобных случаях идентификация проводится не по каждому компоненту, а по совпадению времен удерживания пиков, входящих в состав керосина. Таким же образом проводится идентификация веществ, составляющих основу бензина.

В нашем отделении при отравлениях бытовым газом газохроматографический метод применяется для определения в крови пострадавших метана и пропана. В крови лиц погибших в очаге пожара, наряду с карбоксигемоглобином определяются нитрил акриловой кислоты и ацетонитрил, относящиеся к классу чрезвычайно опасных веществ.

ГЖХ - один из наиболее распространенных методов, применяемых для анализа лекарственных и наркотических соединений. Он позволяет определять самые разнообразные вещества при соответствующей оптимизации условий анализа.

Исследования проводятся на газовом хроматографе "Цвет-560" с детектором по ионизации в пламени на набивных колонках длиной 2 м, с использованием таких неподвижных фаз, как SE-30, ОУ-225, ОУ-17, ПЭГ-20М, SР-2100, нанесенных на силанизированные инертные носители в количестве 3-5%.

Предел обнаружения лекарственных соединений методом ГЖХ с использованием детектора по ионизации в пламени составляет 0,5-1,0 мкг/мл, что достаточно для определения токсических и летальных концентраций.

Подобраны оптимальные условия газохроматографического анализа в биологическом материале таких лекарственных веществ, как димедрол, анальгин, изониазид, верапамил, анаприлин, но-шпа, новокаин и др. Особенно значимы результаты газохроматографического анализа в тех случаях, когда обнаружение этих веществ другими аналитическими методами и ТСХ затруднено из-за отсутствия специфических реакций (например, обнаружение калипсола, циклодола, галоперидола, тразикора).

Достоверные и воспроизводимые результаты получены при анализе производных 1,4-бензодиазепина и производных барбитуровой кислоты.

Предложены условия газохроматографической идентификации индивидуальных веществ при отравлении лекарственными препаратами, сложными и неоднородными по своему составу (например, при отравлении теофедрином идентифицированы шесть веществ, входящих в его состав, в то время как методом ТСХ все составляющие теофедрина разделить не удалось ввиду их различного количественного содержания), а также при комбинированном отравлениях тизерцином и амитриптилином, верапамилом и анаприлином, встречающихся в нашей практике.

Большое количество экспертиз проводится на наличие наркотических веществ в биологическом материале (в основном – в моче, как наиболее информативном материале) без их предварительной дериватизации. Подобраны условия газохроматографического анализа наркотических веществ как растительного происхождения, так и синтетических и полусинтетических наркотиков. Наиболее часто проводятся исследования на наличие алкалоидов группы опия, и чаще всего в моче определяется морфин, реже – с кодеином и тебаином. Все составлящие группу опия определяются достаточно редко. Кстати, морфин является метаболитом героина, кодеина и при обнаружении морфина в моче, достоверно сказать, что было конкретно введено в организм, не всегда возможно. Наряду с обнаружением морфина почти всегда определяется димедрол, элениум или седуксен.

В практике нашего отделения исследования на наличие синтетических наркотиков крайне редки, встречались отдельные случаи обнаружения метадона. Среди психотропных и сильнодействующих соединений в моче определялись такие вещества, как калипсол, трамал, циклодол, галоперидол.

В нашем отделении разработан метод одновременного определения гликолей и гликолевых эфиров, входящих в состав антифризов, тормозных и технических жидкостей. Мы разработали метод одноступенчатого и двухступенчатого программирования температуры колонки, который предполагает одновременное разделение 10 компонентов (4 гликоля, 2 карбитола и 4 целлозольва). Дополнительная идентификация веществ проводится и в изотермическом режиме.

Предложенный метод успешно используется для анализа тормозных жидкостей "Нева", "Томь", "Роса" и антифризов "Тосол" различных марок с идентификацией соответсвующих гликолей и гликолевых эфиров, входящих в их состав. Отравления подобными жидкостями встречаются довольно часто и обнаруживаются во внутренних органах пострадавшего.

Таким образом, газохроматографический метод нашел широкое применение в практике нашего отделения при проведении химико-токсикологического анализа.

You are currently viewing Интоксикация: стадии, причины и лечение

Студент медицинского факультета УЛГУ. Интересы: современные медицинские технологии, открытия в области медицины, перспективы развития медицины в России и за рубежом.

  • Запись опубликована: 27.06.2019
  • Reading time: 2 минут чтения

Интоксикация — это отравление организма, вызванное воздействием какого-либо вещества.

Стадии отравления

В зависимости от тяжести интоксикации принято выделять три стадии течения патологического процесса.

  1. Первая стадия (легкая степень). Симптоматика в этом случае ограничивается изменением дыхания: оно становится частым и неритмичным. Характерно появление преходящих хрипов при дыхании. Наблюдается появление немотивированной эйфории, апатии и их чередование. Такие изменения психоэмоционального фона провоцируются отёком головного мозга. Для этой стадии характерны сердечно-сосудистые нарушения в виде тахикардии и/или незначительная артериальная гипотензия.
  2. Вторая стадия. Такое состояние характеризуется головными болями, ознобом, мышечными спазмами и судорогами. Больной жалуется на бессонницу на фоне слабости и усталости, снижение аппетита вплоть до его отсутствия, тошноту.
  3. Третья стадия. Это тяжёлая лихорадка, способная привести к летальному исходу. Человека беспокоят мышечные боли, озноб, выраженная тахикардия и снижение артериального давления. Галлюцинации и бредовые состояния на этой стадии не редкость. При отсутствии адекватной терапии возможна кома.

Клиническая картина острой интоксикации

Характерная черта этого расстройства — появляется оно сразу, незамедлительно. В этом случае важно оказать помощь на ранней стадии.

Возникновение острой интоксикации связано с проникновением в организм большого количества веществ, обладающих токсическим действием, употреблением пищи или воды ненадлежащего качества или выраженной передозировкой лекарственных препаратов. Характер течения и степень тяжести интоксикации определяется разновидностью токсического вещества, попавшего в организм.

Проявления острой интоксикации

Наиболее характерные проявления острой интоксикации:

  • выраженная резкая боль в области желудка;
  • неудержимая рвота;
  • остро появившийся жидкий стул.

Рвота и понос в этой ситуации — реакция организма на отравление, с помощью которой он старается очиститься от токсического вещества. Поэтому первое время после появления такой симптоматики нет смысла стараться ее заблокировать.

Особенности клинической картины в зависимости от происхождения интоксикации могут варьироваться. Это помогает при диагностике, когда необходимо отличить экзогенную интоксикацию от эндогенной.

Экзогенная интоксикация

Токсические вещества, вызывающие расстройства, могут проникать в организм различными способами: через пищеварительный тракт, слизистые оболочки, кожный покров, через дыхательные пути.

Заподозрить экзогенную интоксикацию помогут следующие симптомы:

  1. Выраженная гипертермия.
  2. Лихорадочное состояние.
  3. Острая реакция со стороны пищеварительного тракта: рвота, диарея, выраженная изжога. При отравлении растворами, имеющими щелочную или кислую реакцию, в рвоте могут присутствовать сгустки крови.
  4. Судорожные сокращения мышц конечностей.
  5. Ухудшение картины рефлексов.

В случае трансдермального проникновения яда в организм или попадания его через слизистую оболочку, в большинстве случаев наблюдается местная реакция в виде выраженных аллергических проявлений: покраснений, очагов высыпаний, напоминающих ожоги.

Важным признаком экзогенной интоксикации синдрома является острое кислородное голодание всех тканей организма. Оно обусловлено способностью токсинов блокировать возможность эритроцитов переносить кислород. Гипоксия приводит к расстройству всех систем жизнеобеспечения организма человека:

  • снижается частота пульса;
  • развивается распространённый отёчный синдром, наиболее опасны отёк лёгких и головного мозга.

Эндогенная интоксикация

Интоксикационный синдром эндогенного происхождения — не самостоятельное заболевание. Он сопровождает многие заболевания и является частью их патогенеза.

Эндотоксинами или аутоядами называются вещества, которые вырабатываются внутри организма в результате распада молекул или клеточных структур. Обладая токсическими свойствами, эти вещества вызывают развитие недостаточности работы жизненно важных органов: почек, печени, сердца.

Проявления эндогенной интоксикации:

  • головная боль;
  • нарушение сна;
  • исчезновение аппетита.

Такой симптомокомплекс часто наблюдается при интоксикационном синдроме, сопровождающем инфекционно-воспалительные заболевания.

В случае более выраженной степени интоксикации добавляются следующие симптомы:

  • снижение суточного объёма мочи;
  • головокружение;
  • ощущение прогрессирующей накопившейся хронической усталости;
  • нарушение ритма работы сердца;
  • галлюцинации — признак тяжёлого интоксикационного синдрома, который сопровождается лихорадкой, в частности, этот симптом характерен для ожоговых травм при поражении большой площади тела с глубиной ожогов 3–4 степени.

В некоторых случаях к указанной симптоматике общего характера добавляются специфические признаки, которые могут помочь при диагностике. Например, желтушное окрашивание склер и кожных покровов при поражении печени билирубином.

Медицинская помощь при отравлении с разными типами интоксикации

Остановить прогрессирование патологических изменений при интоксикации независимо от её характера можно, если прекратить воздействие отравляющего вещества на организм и максимально быстро провести комплекс мероприятий по выведению его из организма больного. В зависимости от механизма отравления для этого применяются следующие методы:

  • промывание желудка;
  • приём сорбентов;
  • форсированный диурез;
  • гемодиализ.

В некоторых случаях эти методы дополняют друг друга.

Одновременно необходимо принимать меры по восстановлению жизненно важных функций организма больного. Особенно это важно при тяжёлой степени отравления. Нарушение водно-электролитного баланса и обезвоживание, возникшие в результате рвоты и диареи, корректируется при помощи обильного питья и/или инфузионной терапии.

При этом существует опасность усугубления отёка головного мозга и лёгких, поэтому за больным необходимо постоянное наблюдение с целью своевременной коррекции нарушений.

На фоне адекватной инфузионной терапии сердечно-сосудистые нарушения могут начать регрессировать самостоятельно. В противном случае приходится брать под контроль давление и удерживать его с помощью соответствующих медикаментов.

При лечении интоксикации на любой стадии может понадобиться и симптоматическая терапия:

Читайте также: