Особенности классификации вирусов таксономия

Обновлено: 25.04.2024

Систематика вирусов. Особенности классификации вирусов. Основные критерии таксономической классификации вирусов.

Вирусы отнесены к царству Vira. В основу их классификации положен тип нуклеиново кислоты, образующей геном. Соответственно выделяют рибовирусы (РНК-вирусы) и дезоксирибовирусы (ДНК-вирусы).

Для вирусов предложены следующие таксономические категории (по восходящей): Вид (Species) —> Род (Genus) —> Подсемейство (Subfamilia) —> Семейство (Familia). Но категории подсемейств и родов разработаны не для всех вирусов. Видовые названия вирусов обычно связывают с вызываемыми ими заболеваниями (например, вирус бешенства) либо по названию места, где они были впервые выделены (например, вирусы Коксаки, вирус Эбола). Если семейство включает большое количество видов, то видовые названия дают в соответствии с антигенной структурой и разделяют их на типы (например, аденовирус 32 типа или вирус герпеса 1 типа). Реже используют фамилии учёных, впервые их выделивших (например, вирус Эпстайна-Барр или вирус саркомы Рауса). Иногда используют устаревшие названия групп вирусов, отражающих их уникальные эпидемиологические характеристики (например, арбовирусы). Классификационные признаки патогенных для человека вирусов приведены в табл. 3-1.

Систематика вирусов. Особенности классификации вирусов. Основные критерии таксономической классификации вирусов.

Таблица 3-1. Семейства вирусов, включающие возбудителей инфекций человека

К вирусам отнесены вироиды [от virus и греч. eidos, сходство] — мелкие кольцевые однонитевые суперспирализованные молекулы РНК (аналогичную организацию имеет геном вируса гепатита D). Поскольку у вироидов нет белковой оболочки, они не проявляют выраженных иммуногенных свойств, и поэтому их нельзя идентифицировать серологическими методами. Вироиды вызывают заболевания у растений. В качестве безымянного таксона в царство Vira также включены и прионы.

Основные критерии таксономической классификации вирусов

При систематизировании вирусов выделяют следующие основные критерии: сходство нуклеиновых кислот, размеры, наличие или отсутствие суперкапсида, тип симметрии нуклеокапсида, характеристика нуклеиновых кислот (молекулярная масса, тип кислоты (ДНК или РНК), полярность [плюс или минус], количество нитей в молекуле либо наличие сегментов, наличие ферментов), чувствительность к химическим агентам (особенно к эфиру), антигенная структура и иммуногенность, тропизм к тканям и клеткам, способность образовывать тельца включений.

Дополнительный критерий — симптоматология поражений: способность вызывать генерализованные поражения либо инфекции с первичным поражением определённых органов (нейроинфекции, респираторные инфекции и др.).

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Вирусы отнесены к царству Vira. В основу их классификации положен тип нуклеиново кислоты, образующей геном. Соответственно выделяют рибовирусы (РНК-вирусы) и дезоксирибовирусы (ДНК-вирусы). Для вирусов предложены следующие таксономические категории (по восходящей): Вид (Species) —> Род (Genus) —> Подсемейство (Subfamilia) —> Семейство (Familia). Но категории подсемейств и родов разработаны не для всех вирусов. Видовые названия вирусов обычно связывают с вызываемыми ими заболеваниями (например, вирус бешенства) либо по названию места, где они были впервые выделены (например, вирусы Коксаки, вирус Эбола). Если семейство включает большое количество видов, то видовые названия дают в соответствии с антигенной структурой и разделяют их на типы (например, аденовирус 32 типа или вирус герпеса 1 типа). Реже используют фамилии учёных, впервые их выделивших (например, вирус Эпстайна-Барр или вирус саркомы Рауса). Иногда используют устаревшие названия групп вирусов, отражающих их уникальные эпидемиологические характеристики (например, арбовирусы).

В основу классификации вирусов положены следующие кате­гории:

• тип нуклеиновой кислоты (ДНК или РНК), ее структура, ко­личество нитей (одна или две), особенности воспроизводства вирусного генома;

• размер и морфология вирионов, количество капсомеров и тип симметрии;

• чувствительность к эфиру и дезоксихолату;

• место размножения в клетке;

• антигенные свойства и пр.

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными. Среди РНК- содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Вирусы— мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки. Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы. Сформированная вирусная частица называется вирионом.

Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полио­миелита, ВИЧ), нитевидной (филовирусы), в виде спермато­зоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусысостоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусыснаружи капсида окружены ли-попротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии. Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита). Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Открытие вирусов Д.И.Ивановским в 1892г. положило начало развитию науки вирусологии. Более быстрому ее развитию способствовали: изобретение электронного микроскопа, разработка метода культивирования микроорганизмов в культурах клеток.

Слово “вирус” в переводе с латинского- яд (животного происхождения). Этот термин применяют для обозначения уникальных представителей живой природы, не имеющих клеточного (эукариотического или прокариотического) строения и обладающих облигатным внутриклеточным паразитизмом, т.е. которые не могут жить без клетки.

В настоящее время вирусология- бурно развивающаяся наука, что связано с рядом причин:

- ведущей ролью вирусов в инфекционной патологии человека (примеры- вирус гриппа, ВИЧ- вирус иммунодефицита человека, цитомегаловирус и другие герпесвирусы) на фоне практически полного отсутствия средств специфической химиотерапии;

- использованием вирусов для решения многих фундаментальных вопросов биологии и генетики.

Основные свойства вирусов (и плазмид), по которым они отличаются от остального живого мира.

1.Ультрамикроскопические размеры (измеряются в нанометрах). Крупные вирусы (вирус оспы) могут достигать размеров 300 нм, мелкие- от 20 до 40 нм. 1мм=1000мкм, 1мкм=1000нм.

2.Вирусы содержат нуклеиновую кислоту только одного типа- или ДНК (ДНК- вирусы) или РНК (РНК- вирусы). У всех остальных организмов геном представлен ДНК, в них содержится как ДНК, так и РНК.

3.Вирусы не способны к росту и бинарному делению.

4.Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

5.У вирусов нет собственных систем мобилизации энергии и белок- синтензирующих систем, в связи с чем вирусы являются абсолютными внутриклеточными паразитами.

6.Средой обитания вирусов являются живые клетки- бактерии (это вирусы бактерий или бактериофаги), клетки растений, животных и человека.

Все вирусы существуют в двух качественно разных формах: внеклеточной- вирион и внутриклеточной- вирус. Таксономия этих представителей микромира основана на характеристике вирионов- конечной фазы развития вирусов.

Название семейства вирусов заканчивается на “viridae”, рода- “virus”, для вида обычно используют специальные названия, например - вирус краснухи, вирус иммунодефицита человека- ВИЧ, вирус парагриппа человека типа 1 и т.д.

Вирусы бактерий (бактериофаги).

Естественной средой обитания фагов является бактериальная клетка, поэтому фаги распространены повсеместно (например, в сточных водах). Фагам присущи биологические особенности, свойственные и другим вирусам.

Наиболее морфологически распространенный тип фагов характеризуется наличием головки- икосаэдра, отростка (хвоста) со спиральной симметрией (часто имеет полый стержень и сократительный чехол), шипов и отростков (нитей), т.е. внешне несколько напоминают сперматозоид.

Взаимодействие фагов с клеткой (бактерией) строго специфично, т.е. бактериофаги способны инфицировать только определенные виды и фаготипы бактерий.

Основные этапы взаимодействия фагов и бактерий.

1.Адсорбция (взаимодействие специфических рецепторов).

2.Внедрение вирусной ДНК (инъекция фага) осуществляется за счет лизирования веществами типа лизоцима участка клеточной стенки, сокращения чехла, вталкивания стержня хвоста через цитоплазматическую мембрану в клетку, впрыскивание ДНК в цитоплазму.

4.Выход дочерних популяций.

Основные свойства фагов.

Различают вирулентные фаги, способные вызвать продуктивную форму процесса, и умеренные фаги, вызывающие редуктивную фаговую инфекцию (редукцию фага). В последнем случае геном фага в клетке не не реплицируется, а внедряется (интегрируется) в хромосому клетки хозяина (ДНК в ДНК), фаг превращается в профаг. Этот процесс получил название лизогении. Если в результате внедрения фага в хромосому бактериальной клетки она приобретает новые наследуемые признаки, такую форму изменчивости бактерий называют лизогенной (фаговой) конверсией. Бактериальную клетку, несущую в своем геноме профаг, называют лизогенной, поскольку профаг при нарушении синтеза особого белка- репрессора может перейти в литический цикл развития, вызвать продуктивную инфекцию с лизисом бактерии.




Умеренные фаги имеют важное значение в обмене генетическим материалом между бактериями- в трансдукции (одна из форм генетического обмена). Например, способностью вырабатывать экзотоксин обладают только возбудитель дифтерии, в хромосому которого интегрирован умеренный профаг, несущий оперон tox, отвечающий за синтез дифтерийного экзотоксина. Умеренный фаг tox вызывает лизогенную конверсию нетоксигенной дифтерийной палочки в токсигенную.

По спектру действия на бактерии фаги разделяют на :

- поливалентные (лизируют близкородственные бактерии, например сальмонеллы);

- моновалентные (лизируют бактерии одного вида);

- типоспецифические (лизируют только определенные фаговары возбудителя).

На плотных средах фаги обнаруживают чаще с помощью спот (spot) - теста (образование негативного пятна при росте колоний) или методом агаровых слоев (титрования по Грациа).

Практическое использование бактериофагов.

1.Для идентификации (определение фаготипа).

2.Для фагопрофилактики (купирование вспышек).

3.Для фаготерапии (лечение дисбактериозов).

4.Для оценки санитарного состояния окружающей среды и эпидемиологического анализа.

Морфология и структура вирусов. Понятие о вирионе. Типы симметрии нуклеокапсида. Химический состав вирусов. Методы культивирования вирусов. Типы взаимодействия вирусов с клеткой. Основные стадии взаимодействия вирусов с клеткой хозяина при продуктивном типе инфекции. Особенности репродукции ДНК- иРНК-содержащих вирусов.

Строение (морфология) вирусов.

1.Геном вирусов образуют нуклеиновые кислоты, представленные одноцепочечными молекулами РНК (у большинства РНК- вирусов) или двухцепочечными молекулами ДНК (у большинства ДНК- вирусов).

2.Капсид - белковая оболочка, в которую упакована геномная нуклеиновая кислота. Капсид состоит из идентичных белковых субъединиц- капсомеров. Существуют два способа упаковки капсомеров в капсид- спиральный (спиральные вирусы) и кубический (сферические вирусы).

При спиральной симметрии белковые субъединицы располагаются по спирали, а между ними, также по спирали, уложена геномная нуклеиновая кислота (нитевидные вирусы). При кубическом типе симметрии вирионы могут быть в виде многогранников, чаще всего- двадцатигранники - икосаэдры.

3.Просто устроенные вирусы имеют только нуклеокапсид, т.е. комплекс генома с капсидом и называются “голыми”.

4. У других вирусов поверх капсида есть дополнительная мембраноподобная оболочка, приобретаемая вирусом в момент выхода из клетки хозяина- суперкапсид. Такие вирусы называют “одетыми”.

Кроме вирусов, имеются еще более просто устроенные формы способных передаваться агентов - плазмиды, вироиды и прионы.

Основные этапы взаимодействия вируса с клеткой хозяина.

1.Адсорбция- пусковой механизм, связанный со взаимодействием специфических рецепторов вируса и хозяина (у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- гликопротеин gp 120).

2.Проникновение- путем слияния суперкапсида с мембраной клетки или путем эндоцитоза (пиноцитоза).

3.Освобождение нуклеиновых кислот- “раздевание” нуклеокапсида и активация нуклеиновой кислоты.

4.Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса.

5.Сборка вирионов- ассоциация реплицированных копий вирусной нуклеиновой кислоты с капсидным белком.

6.Выход вирусных частиц из клетки, приобретения суперкапсида оболочечными вирусами.

Исходы взаимодействия вирусов с клеткой хозяина.

1.Абортивный процесс- когда клетки освобождаются от вируса:

- при инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна ( так называемые вирусоиды). Например, вирус дельта (D) гепатита может реплицироваться только при наличии вируса гепатита B, его Hbs - антигена, аденоассоциированный вирус- в присутствии аденовируса);

- при инфицировании вирусом генетически нечувствительных к нему клеток;

- при заражении чувствительных клеток вирусом в неразрешающих условиях.

2.Продуктивный процесс- репликация (продукция) вирусов:

- гибель (лизис) клеток (цитопатический эффект)- результат интенсивного размножения и формирования большого количества вирусных частиц - характерный результат продуктивного процесса, вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит достаточно узнаваемый специфический характер;

- стабильное взаимодействие, не приводящее к гибели клетки (персистирующие и латентные инфекции) - так называемая вирусная трансформация клетки.

3.Интегративный процесс- интеграция вирусного генома с геномом клетки хозяина. Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК- геном хозяина могут только ДНК- вирусы (принцип “ДНК- в ДНК”). Единственные РНК- вирусы, способные интегрироваться в геном клетки хозяина- ретровирусы, имеют для этого специальный механизм. Особенность их репродукции- синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы с последующим встраиванием ДНК в геном хозяина.

Основные методы культивирования вирусов.

1.В организме лабораторных животных.

2.В куриных эмбрионах.

3.В клеточных культурах - основной метод.

Типы клеточных культур.

1.Первичные (трипсинизированные) культуры- фибробласты эмбриона курицы (ФЭК), человека (ФЭЧ), клетки почки различных животных и т.д. Первичные культуры получают из клеток различных тканей чаще путем их размельчения и трипсинизации, используют однократно, т.е. постоянно необходимо иметь соответствующие органы или ткани.

2.Линии диплоидных клеток пригодны к повторному диспергированию и росту, как правило не более 20 пассажей (теряют исходные свойства).

3.Перевиваемые линии (гетероплоидные культуры), способны к многократному диспергированию и перевиванию, т.е. к многократным пассажам, наиболее удобны в вирусологической работе- например, линии опухолевых клеток Hela, Hep и др.

Специальные питательные среды для культур клеток.

Используются разнообразные синтетические вирусологические питательные среды сложного состава, включающие большой набор различных факторов роста- среда 199, Игла, раствор Хэнкса, гидролизат лактальбумина. В среды добавляют стабилизаторы рН (Hepes), различные в видовом отношении сыворотки крови (наиболее эффективной считают эмбриональную телячью сыворотку), L-цистеин и L-глютамин.

В зависимости от функционального использования среды могут быть ростовые (с большим содержанием сыворотки крови) - их используют для выращивания клеточных культур до внесения вирусных проб, и поддерживающие (с меньшим содержанием сыворотки или ее отсутствием)- для содержания инфицированных вирусом клеточных культур.

Выявляемые проявления вирусной инфекции клеточных культур.

2.Выявление телец включений.

3. Выявление вирусов методом флюоресцирующих антител (МФА), электронной микроскопией, авторадиографией.

4.Цветная проба. Обычный цвет используемых культуральных сред, содержащих в качестве индикатора рН феноловый красный, при оптимальных для клеток условиях культивирования (рН около 7,2)- красный. Размножение клеток меняет рН и соответственно- цвет среды с красного на желтый за счет смещения рН в кислую сторону. При размножении в клеточных культурах вирусов происходит лизис клеток, изменения рН и цвета среды не происходит.

5.Выявление гемагглютинина вирусов- гемадсорбция, гемагглютинация.

6.Метод бляшек (бляшкообразования). В результате цитолитического действия многих вирусов на клеточные культуры образуются зоны массовой гибели клеток. Выявляют бляшки- вирусные “ клеточно- негативные” колонии.

Вирусология — наука, изучающая морфологию, физиологию, генетику, экологию и эволюцию вирусов.

В 1898 г. Ф. Леффлер и П. Фрош показали, что широко распространенная болезнь крупного рогатого скота — ящур, вызывается агентом, который также проходит через бактериальные фильтры. Этот год считается годом открытия вирусов животных.

В 1901 г. Рид и Кэррол показали, что фильтрующиеся агенты можно выделить и из трупов людей, умерших от желтой лихорадки. Этот год считается годом открытия вирусов человека.

Вирусы до сих пор остаются одними из главных возбудителей инфекционных и неинфекционных заболеваний человека. Более 1000 различных болезней имеют вирусную природу. Вирусы и вызываемые ими болезни человека являются объектом пристального изучения медицинской вирусологии.

Вирусы имеют кардинальные отличия от других прокариотических микроорганизмов:

1. Они не имеют клеточного строения. Это доклеточные формы биологической жизни.

2. Имеют субмикроскопические размеры, варьирующие у вирусов человека в пределах 15-250 и более нм.

3. Характеризуются только одним типом нуклеиновой кислоты: или ДНК, или РНК в качестве генома.

4. Вирусы не обладают собственными системами метаболизма и получения энергии.

5. Репликация вирусов происходит в клетках с использованием их белоксинтезирующих и энергетических систем, поэтому они — облигатные внутриклеточные паразиты.

6. Вирусы не способны к прогрессивному росту и делению. Они образуются в виде зрелых форм (вирионов) путем самосборки из готовых, т.е. преформированных компонентов (белков, нуклеиновых кислот).

В основу современной классификации вирусов положены следующие основные критерии:

1. Тип нуклеиновой кислоты (РНК или ДНК) и ее первичная структура — сиквенс (одно- или двунитчатая, линейная, циркулярная, непрерывная или фрагментированная).

2. Характеристика вирионов: наличие белковой оболочки (капсида) и/или дополнительной липопротеидной оболочки (суперкапсида), размер и морфология, тип симметрии.

3. Стратегия вирусного генома в клетке хозяина (т.е. используемый вирусом путь транскрипции, трансляции, репликации и выход из нее).

4. Антигенные и физико-химические свойства.

5. Феномены генетических взаимодействий.

6. Экологические взаимодействия (круг восприимчивых хозяев, ареал географического распространения).

7. Механизмы патогенности (характер изменений в клетках, образование внутриклеточных включений, изменения экспрессии генов клеток хозяина, апоптоз и трансформация клеток).

8. Способы передачи и резистентность к факторам внешней среды (γ-из-лучению, температуре, действию детергентов, эфира, противовирусным препаратам).




Вид — группа вирусов, имеющих совпадающие характеристики (несколько главных свойств), составляющих реплицирующуюся линию.

Род — группа видов вирусов, имеющих общие свойства. Обычно формируется на основе типового вида, т.е. вида, по своим характеристикам и генетическим связям удовлетворяющего требованиям рода.

Семейство — совокупность родов вирусов с общими характеристиками. Формируется на основе типового рода.

Порядок — группа взаимосвязанных семейств вирусов (не полностью применимо в таксономии вирусов).

Другие таксоны, более высокого уровня (класс, отряд, царство), не применимы для вирусов.

В 1966 г. Комитет по Таксономии вирусов предложил первую унифицированную классификацию вирусов. В 1973 г. были расширены его права и он официально назван Международным Комитетом по Таксономии Вирусов (МКТВ). Комитет пересматривает классификацию каждые четыре года. Последняя классификация опубликована в 2000 г. Она включает классификацию 1550 вирусов, объединенных в 3 порядка, 56 семейств, 9 подсемейств и 203 рода. Мировая коллекция вирусов включает более 30 000 штаммов вирусов. Вирусы человека и животных распределены в 25 семействах: 15 — РНК-геном-ных и 10 — ДНК-геномных.

Классификация и некоторые свойства вирусов человека и животных представлены в таблице 1.

Классификация вирусов. Современная номенклатура в вирусологии.

Установлено, что все изученные организмы поражаются вирусами. Множество различных вирусов вызывают заболевания или латентно инфицируют позвоночных и беспозвоночных животных, а также простейших, растения, грибы и бактерии. Известно более 4000 разных вирусов, из которых несколько сотен инфицируют людей и животных.

Международным комитетом по таксономии вирусов (ICTV, 2000) разработана единая система классификации и номенклатуры вирусов, которая основана на изучении различных свойств вирусов, таких как размер, морфология и структура вириона, его устойчивость к воздействию различных факторов и антигенные свойства.

классификация вирусов

Классификация вирусов

На сегодня главным критерием в таксономии вирусов являются: 1) тип и структура вирусного генома 2) стратегия репликации вируса 3) структура вириона. Полное или частичное секвенирование вирусного генома увеличивает таксономическую информацию и очень часто используется с целью идентификации вируса.

Сведения о нуклеотидной последовательности для всех таксономических групп вирусов имеются в опубликованной базе данных (Генбанк, Национального Центра биотехнологической информации, Национальной медицинской лаборатории, Национального Института здоровья, Бетезда, Мериленд, США). Это достижение в большинстве случаев укорачивает таксономическую идентификацию, хотя традиционные методы все еще часто используются по экономическим соображениям. Универсальная система таксономии вирусов включает несколько уровней: порядок, семейство, подсемейство, род и вид. Патогенные вирусы позвоночных (человека и животных) в соответствии с современной системой классификации вирусов объединены в 2 (Mononegavirales и Nidovirales) порядка и 28 семейств, из которых 10 являются ДНК-вирусами и 18 РНК-вирусами.

Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.

Читайте также: