Жизнь это вирус или

Обновлено: 11.05.2024

В наши дни интерес к вирусам неизмеримо возрос. Это естественно. Ведь лоток информации о вирусах, их свойствах и изменчивости сопровождает, например, каждую эпидемию гриппа.

Вирус герпеса под электронным микроскопом. На снимках довольно отчетливо просматривается строение оболочки, состоящей из пятигранных (слева) и шестигранных (справа) призм.

Схематическое изображение частицы вируса герпесе, оболочка которой построена из 150 шестигранных и 12 пятигранных призм.

Вирионы гриппа. Сквозь частично разрушенную внешнюю оболочку видна плотная упаковка трубчатого внутреннего содержимого — рибонуклепротеина.

Схематическое строение различных фагов. Вверху — фагочастица в активном состоянии, в центре и внизу — в неактивном (колющий аппарат вышел наружу).

Увеличивается во всем мире и число сторонников вирусной теории рака. Исследования сотен лабораторий свидетельствуют, что именно вирусы — наиболее вероятная причина рака, саркомы, лейкемии.

И. Губарев, наш специальный корреспондент, обратился к директору Института вирусологии имени И. Д. Ивановского АМН СССР, академику АМН СССР, профессору Виктору Михайловичу Жданову с просьбой рассказать об истории и сегодняшнем дне Вирусологии, о стратегии борьбы С вирусными болезнями.

Вирусология — наука молодая. 80 лет прошло со времени открытия И. Д. Ивановским первого вируса — возбудителя мозаичной болезни табака. Много позже — в 50-х годах — было получено первое несовершенное изображение этого инфекционного агента. Самые значительные исследования в области вирусологии были выполнены лишь за последние 15—20 лет.

С исследованиями вирусологов сегодня связано уничтожение инфекционных заболеваний на планете, борьба против рака. Вирусологии же, изучающей наиболее простые формы существования, предстоит дать ответ на многие вопросы, связанные с происхождением жизни на Земле.

Итак, что же мы знаем и «его еще не знаем о вирусах?

Пример: до недавнего времени мы почти ничего не знали о специфических обезьяньих вирусах. В 1960-х годах было начато массовое производство вакцины против полиомиелита, изготавливаемой на обезьяньих почках. Необходимо было обеспечить стерильность этой вакцины, то есть полностью исключить проникновение в нее каких-либо микроорганизмов. И вот в ходе исследований, направленных на обеспечение такого рода стерильности, был открыт целый ряд до тех пор неизвестных вирусов, специфичных для обезьян.

К настоящему времени мы располагаем сведениями примерно о тысяче видах вирусов. Безусловно, лучше других нам известны вирусы, поражающие человека. Их выявлено около 500 видов. Весьма обширна группа вирусов, найденных у лабораторных животных — мышей, кроликов, морских свинок.

Сравнительно много мы знаем о вирусах сельскохозяйственных животных и растений, меньше — о вирусах, опасных для птиц и других животных, древесных и кустарниковых пород лесе. И уж вовсе малоизвестны и числом и повадками вирусы папоротников, мхов, лишайников.

Вирусы проявляют себя не всегда одинаково. В одних случаях они нападают лишь на определенные виды живых существ. Скажем, уже выявлены специфические вирусы гриппа свиней, кошек, чаек, поражающие только этих животных и безопасные для других. Подчас специализация становится своеобразно утонченной: мельчайшие вирусы бактерий — фаги Р-17 выбирают в качестве объекта лишь мужские особи только одной разновидности кишечной палочки. А вот в числе объектов онкогенных вирусов — пресмыкающиеся, птицы, млекопитающие. Рекорд побивают, пожалуй, так называемые пулевидные вирусы, названные так благодаря их характерному очертанию на микрофотографии. Внешне вирусы этой разновидности очень схожи. А болезни они вызывают самые разнообразные, поражая при этом весьма далекие друг от друга виды живых существ. Они могут стать причиной бешенства — тяжелейшего поражения нервной системы млекопитающих (в том числе, разумеется, и человека) и таких болезней, как везикулярный стоматит крупного рогатого скота (передаваемый, кстати, через насекомых), желтой карликовости картофеля и полосатой штриховатости пшеницы. Эти же вирусы провоцируют тяжелое заболевание у мухи дрозофилы, приводящее насекомое к гибели в результате повышения чувствительности к углекислому газу.

Человек, животные, насекомые, растения. Болезни общие для многих видов и узко-специфичные. Откуда такой широкий спектр агрессивных возможностей? Под влиянием каких условий сложились эти свойства? Сколько еще существует в природе вирусов специализированных и универсальных?

На все эти вопросы лишь предстоит ответить.

Гипотезы, гипотезы.

С вирусами связано немало загадочного, неясного, а если быть точным до конца — еще не выясненного.

Признавая существование возбудителей инфекционных болезней, по размерам намного меньших, чем бактерии, ученые долго не могли прийти к единому мнению: какие они? Так, известный голландский микробиолог М. Бейеринк, к примеру, предполагал, что вирусы — необъяснимая загадка. Он дал им название Cоntagium vivum fluidum — живое жидкое заразное начало.

Другие исследователи пытались связать данные о вирусах с привычными для них представлениями о живом организме (клеточное строение, размножение путем деления с последующим ростом до размеров взрослой особи и т. д.). Не будем перечислять здесь другие предположения, высказанные на заре развития вирусологии. Все они — как наивные, так и наделенные долей предвидения — строились на одних лишь догадках, вслепую.

Много неясного и в современных гипотезах о происхождении вирусов. Так, одни исследователи считают, что вирусы — это потомки древних доклеточных форм жизни, застывшие, остановившиеся в своем развитии на определенном этапе. Разнообразие генетического вещества, говорят сторонники гипотезы, отражает ход эволюции этих существ. Природа как бы опробовала на вирусах все возможные варианты наследственного вещества, прежде чем остановиться окончательно на двухспиральной ДНК.

Вирусы — потомки бактерий или других одноклеточных организмов, по неизвестным причинам двинувшиеся в своем развитии вспять, деградировавшие, говорят другие ученые. Возможно, некогда их устройство было сложней, но со временем они многое утратили, и их нынешнее состояние, в том числе и разнообразие носителей генетической информации, лишь отражает разные уровни деградации, которых достигли различные их виды.

Наконец, существует гипотеза, согласно которой вирусы представляют собой составные части клеток живых существ, по неизвестной причине ставшие автономными системами. Процесс возникновения вирусов, согласно этой гипотезе, относится не только к глубокой древности, когда они уже, безусловно, существовали, но и к нашему времени. Иными словами, эта гипотеза признает возможность повсеместного, происходящего непрерывно образования вирусов клеточными элементами. Возможно ли такое, способны ли составные части клеток стать автономными, да еще и саморепродуцирующимися (способными к воспроизведению) системами?

Логика и парадоксы микромира

Устройство вирусов поражает своей чисто математической завершенностью, логикой симметрии. Возьмем, к примеру, наиболее просто организованный вирион (зрелый вирус) табачной мозаики.

Сотни белковых кристаллообразных структур уложены в виде тугой спирали. Сердцевина нити, образующей спираль, представляет собой своеобразную капсулу, где находится молекула нуклеиновой кислоты. В результате общий вид вириона — предельно лаконичный цилиндр, полая трубка.

А вот другая форма: двадцатигранник, икосаэдр, грани которого образованы треугольниками. Основной материал, из которого сложен икосаэдр, — те же белковые структуры. Внутри — полость, где покоится молекула нуклеиновой кислоты. Это вирион полиомиелита.

— Позвольте, — возражали многие ученые еще в недавнем прошлом, — да можно ли вообще после этого называть вирусы живыми существами? Может быть, это кристаллообразные вещества, наделенные болезнетворными свойствами?

— Либо, — говорили другие, — это пограничные формы между живым и неживым мирами.

Кто же прав? Скорей всего наиболее многочисленная группа исследователей, которая считает, что вирусы — представители живой природы, го есть не вещества, а существа. Правда, существа крайне своеобразные, ведущие сугубо паразитический образ жизни.

Вирус проникает в клетку

Вирусы, имеющие иное строение, проникают в клетку не столь затейливым путем. Притянутые к оболочке клетки и воздействующие на нее ферментами, они провоцируют втягивание внутрь того участка мембраны, на котором осели. Образуется своего рода капсула-вакуоль с вирусной частицей внутри. Вакуоль эта затем отрывается, и в ней, путешествующей внутри клетки, продолжают идти одновременно два процесса — вирусная частица с помощью своих ферментов разрушает окутывающие ее стенки капсулы, а ферменты клетки разрушают внешние оболочки вируса, освобождая, как это было и в случае с фагом Т2, нуклеиновую кислоту.

Фабрика вирусов

Итак, нуклеиновая кислота покинула белковую оболочку и исчезла, бесследно растворилась в клеточной среде. Что же дальше?

Мы еще не имеем возможности получить полный ответ на этот вопрос. До сих пор удалось установить характер лишь некоторых изменений, происходящих на этом этапе в различных частях клетки. И по этим отдельным штрихам мы воссоздаем, пытаемся представить себе полностью происходящее.

Формирование вирусов начинается, по-видимому, с подавления нормальных процессов обмена веществ в клетке. Установлено, в частности, что рибонуклеиновая кислота (РНК) вируса гриппа способна синтезировать на клеточных элементах — рибосомах, ведающих выработкой белка,— особое вещество, также белковой природы,— гистон, который, в свою очередь, связывается с ДНК клетки и прекращает синтез клеточной РНК. Некоторые другие вирусы, например, вирусы полиомиелита, не нуждаются в окольном пути, так как сами способны вмешаться в деятельность рибосом и прекратить синтез клеточных белков. Выявлены и другие механизмы подавления вирусами клеточного обмена, их вмешательства в жизнедеятельность клетки, но в конечном счете все сводится к одному: клеточные ресурсы перестают расходоваться на нужды самих клеток и поступают в распоряжение вирусной нуклеиновой кислоты.

Беззащитна ли клетка!

Цикл превращений, связанных с размножением вирусов, как правило, краток. В одних случаях проникновение вирусной нуклеиновой кислоты в клетку отделяет от появления вирионов 13—15 минут, в других — 40 минут. Вирусы одной из наиболее распространенных инфекций, гриппа, проходят этот путь примерно за 6—8 часов. И каждый раз около погибшей клетки оказываются десятки, а порой и сотни вирионов. Причем каждый из них, в свою очередь, готов к продолжению процесса размножения. Количество вирусной инфекции нарастает буквально лавинообразно.

Но так как главное действующее лицо — вирус остается за кадром (в обычный микроскоп он не виден), на экране только последствия его агрессии. Картина перед наблюдателем разворачивается впечатляющая. Вначале крайние клетки, первыми подвергшиеся нападению, начинают терять свойственные им округлые очертания. Постепенно истончаются их мембраны, клеточные элементы, клетка как бы взрывается. В этот момент, как мы знаем (но не видим этого), опустошенную оболочку покидают полчища вирионов, направляющихся к очередным своим жертвам. И через самое непродолжительное время точно так же изменяются, а затем лопаются соседние клетки, за ними другие, еще и еще.

. Колония клеточной культуры как бы охвачена пламенем. Вот она рассечена обезжизненными структурами на островки. Вот сжимаются и эти островки, уменьшаются в размерах, и. все кончено. Колония разрушена дотла.

Обладай вирусы такими же возможностями в естественных условиях, и человеку и любому другому живому существу пришлось бы плохо. Однако этого не происходит, ибо на страже — отработанные за миллионы лет защитные приспособления организма, ограничивающие могущество вирусов.

Безграничному расширению вирусной агрессии препятствуют прежде всего сами вирусы. Еще в 30-х годах ученые заметили, что размножение в клетке одного вируса нередко препятствует размножению в этой же клетке другого вируса.

Кстати, если говорить серьезно, одна из многочисленных гипотез, пытавшихся объяснить это явление, так и гласила: всему причиной конкуренция вирусов, борющихся за клеточные компоненты. Без малого три десятилетия понадобилось, чтобы раскрыть существо этого явления, получившего название интерференции. И, как оказалось, в данном случае инициатива принадлежала не вирусам, а самой клетке. На проникновение вируса (чему воспрепятствовать клетка, увы, не может) она отвечает немедленной выработкой особого белкового вещества — интерферона. Правда, интерферон не спасает уже пораженную клетку, но препятствует продвижению вирусной инфекции к другим клеткам организма. Иными словами, за первыми же вирионами, прорвавшимися в организм, возникает барьер интерфероновой защиты.

Антитела, появляющиеся позже, существуют несравненно дольше. Именно они и становятся основой стойкого иммунитета, благодаря которому многие инфекционные болезни не повторяются дважды в жизни одного индивидуума.

Медицина — в наступлении

Среди инфекционных заболеваний 80 процентов вирусных. Эта цифра — свидетельство победы человека над бактериальными инфекциями. Чума, холера, тиф, некогда безоговорочно первенствовавшие в медицинских статистических сводках, с приходом антибиотиков и сульфопрепаратов навсегда сдали свои позиции. Их место заняли болезни, вызываемые вирусами.

Как известно, и с этими недугами ведется успешная борьба. Побежден полиомиелит. Тягостным воспоминанием ушла в прошлое оспа. Широким фронтом идет наступление на корь: лишь за последнее пятилетие число перенесших заболевание корью снизилось в 5 раз; на повестке дня — полное искоренение этой инфекции на территории нашей страны.

Значительные усилия направляются на борьбу с гепатитом, гриппом, паротитом, вирусными респираторными заболеваниями, однако здесь решающие достижения еще впереди.

Наряду с этим ученые работают над созданием других эффективных лекарственных веществ, способных подавить вирусную инфекцию.

Работа эта начата. Во все концы нашей страны и за рубеж отправляются специальные экспедиции вирусологов. Уже получены чрезвычайно ценные данные о перемещениях вирусной гриппозной инфекции из Всемирного противогриппового центра, в деятельность которого вносит существенный вклад региональный противогриппозный центр СССР.

Судя по их белкам, вирусы возникли почти одновременно с древнейшими клетками и с тех пор развивались как самостоятельная группа.

Обычно, когда рассуждают о происхождении и развитии жизни на Земле, вирусы предпочитают держать в стороне: уж слишком их неклеточная организация расходится с представлением, что всякая жизнь – это, прежде всего, клетка. Существует вполне уважаемая гипотеза, согласно которой вирусы – всего лишь взбесившиеся молекулярные комплексы, которые по ходу развития жизни периодически формируются из обломков клеточных геномов. Однако есть и другая точка зрения, которая даёт вирусам звание четвёртого домена жизни, наряду с бактериями, археями и эукариотами.

Специфический вирусный структурный мотив белковых молекул, который можно найти в нескольких вирусных белках: например, в РНКазе H у ВИЧ, дезоксинуклеотидкиназе бактериофага Т4 и ДНК-полимеразе бактериофага Т7. (Иллюстрация: Arshan Nasir / University of Il

По словам авторов работы, такие структурные мотивы могут быть настоящими живыми ископаемыми, которые без изменений существуют миллионы и миллиарды лет, путешествуя от белка к белку. И в случае с вирусами они могут быть намного более надёжными свидетелями эволюции, нежели ДНК или РНК. Вирусные геномы мутируют чрезвычайно быстро, и в них очень трудно вычленить среди моря мутаций такие, которые бы указывали именно на эволюционное сходство или разницу между вирусными группами. Нуклеиновые кислоты допускают большую степень изменчивости, однако на уровне белковой молекулы эти изменения в ДНК нивелируются, чтобы самое важное – пространственная укладка белковой молекулы – осталось неизменным.

Исследователи проанализировали все известные структурные мотивы беловых молекул на примере более чем 5 000 видов организмов, среди которых было 3 460 вирусов. В результате удалось найти 442 белковые укладки, общие для вирусов и для клеточных форм; ещё 66 мотивов оказались уникально-вирусными. В статье в Science Advances авторы строят новое древо жизни, но уже с вирусами, которые, как они полагают, произошли от древнейших клеток. Видимо, вирусные клеточные предки обладали сегментированным РНК-геномом (то есть состоящим из нескольких фрагментов РНК), кусочки которого вирусы могли вынести наружу, обернув для защиты белками.

Двумя годами ранее Каэтано-Анольес с сотрудниками опубликовали в BMC Evolutionary Biology другую статью на ту же тему, с акцентом на гигантские вирусы, вроде мимивируса, чей геном превосходит по объёму информации некоторые геномы клеточных организмов. Любопытно, что у мимивируса зачем-то есть гены, необходимые для синтеза белка (как известно, у вирусов нет своего белок-синтезирующего молекулярного аппарата, они пользуются мощностями заражённой клетки). В той работе была высказана гипотеза, что в далёком прошлом все вирусы были гигантскими и обладали гораздо более обширными геномами, чем мы видим у большинства из них сейчас. То есть неклеточность, которая так смущает биологов, вполне могла быть обычным движением от сложного к простому, как это можно видеть на примере эволюции паразитов. Что же до отсутствия у современных вирусов способности самостоятельно удваивать свой генетический материал и вообще размножаться, то здесь можно вспомнить про некоторые грибы и бактерии, которые не могут жить вне хозяйской клетки – вирусы похожи на них, хотя у бактерий и грибов есть собственные инструменты для манипуляций с ДНК, РНК и т. д.

В общем, если судить по вирусным белкам, то окажется, что вирусы не только встроены в общий путь развития жизни, но и появились на свет где-то у его истоков. И, что самое главное, обладали собственной эволюцией, развиваясь, как единая группа. Необходимо подчеркнуть, что речь идёт не том, являются ли вирусы живыми – то есть соответствуют ли они некоему предначертанному идеалу живого.

вирусы не живые

Вирусы несут ответственность за некоторые из самых опасных, и даже иногда смертельных заболеваний человека. Среди них – всем известный грипп, лихорадка Эбола, бешенство, оспа и многие другие. Очевидно, что вирусы имеют весьма развитую потенциальную возможность убивать. Но при этом они фактически считаются неживыми. Такими же, как экран, на котором вы читаете эту статью.

Но как такое возможно? Почему же тогда вирусы распространяются так быстро? Почему они умеют размножаться и заражать живых существ, если сами при этом не являются живыми?

К настоящему времени наука еще не представила всеми единодушно принятого определения, что такое жизнь. Однако несколько основных вопросов, позволяющих различать живое и неживое, сформулировать можно.

Почему вирусы не отвечают этим требованиям?

Наконец, вирус не считается живым, потому что ему не нужно потреблять энергию, чтобы выжить. И при этом он не может регулировать свою собственную температуру. В отличие от живых организмов, которые удовлетворяют свои энергетические потребности посредством метаболических процессов, которые синтезируют энергетически богатые единицы аденозинтрифосфата (АТФ), энергетической валюты жизни, вирусы не могут выжить сами по себе.

Теоретически, вирус может перемещаться в пространстве бесконечно долго. Потому что он не расходует энергию. Он может это делать до тех пор, пока не столкнется с нужной клеткой, которую сможет заразить. Создавая после заражения множество собственных копий.

Это три основных аргумента против. Но можно ли допустить, что вирусы все-таки могут быть живыми?

Все немного сложнее

В общем-то да. По крайней мере можно предположить, что грань между живым и неживым может быть немного размытой.

Известно, что некоторые вирусы имеют части молекулярного механизма, необходимого для самовоспроизводства. Например, это гигантский мимивирус. Он настолько большой, что его изначально приняли за бактерию. Этот вирус имеет геном крупнее, чем даже у некоторых бактерий. И этот геном содержит гены, которые позволяют вирусу производить аминокислоты и другие белки, необходимые для воспроизводства. Однако мимивирусу все же не хватает рибосомальной ДНК, которая кодирует сборку белков. Именно ее присутствие обеспечивает процесс воспроизводства.

Еще одним признаком нечетких границ между живым и неживым является то, что большая часть генов вирусов и живых клеток – это один и тот же набор.

В 2015 году было проведено исследование белковых структур, которые почти не изменились в ходе эволюции. Их образцы взяли из тысяч живых организмов и вирусов. Было выявлено 442 структуры, общие для всех. И только 66 из них были специфичны лишь для вирусов.

Поэтому очевидно, что для ответа на поставленный вопрос – почему вирусы не считаются живыми – нам нужно будет расширить наше понимание, что же такое на самом деле жизнь…

Житель планеты Земля!

Оставь чуть ниже свой комментарий. Его увидят тысячи людей. И обязательно поделись статьей в социальных сетях. Это очень поможет развитию проекта. Большое спасибо!

Очень существенным отличием от явно живого является то, что вирусы являются внутриклеточными паразитами, причем сильный акцент делается на их зависимости от хозяина.

Вирус живой или неживой

Конечно, чтобы исследовать вирус живой или неживой необходимо различие между живым и неживым с исторической точки зрения, характеризуя происхождение жизни, но это трудная задача.

Версия что вирусы не живые

Выдвинута точка зрения: вирусы не могут считаться живыми из-за их неспособности размножаться без клеточного хозяина.

Простые примеры из различных областей биологии показывают, что резкая граница между живыми и неживыми (или одушевленными и неодушевленными) сущностями-это всего лишь иллюзия. Интересные факты природы это подтверждают.

Промежуточное состояние

Растущие бактерии и археи, безусловно, живы. Однако многие из них, если не большинство, впадают в спящее (персистирующее) состояние при голодании и других формах стресса. Спящие клетки имеют значительно сниженную метаболическую активность и либо способны, либо не способны возобновить рост и деление в зависимости от условий окружающей среды, а также случайных факторов.

Аспекты живости

В приведенном выше обсуждении рассматривается вопрос о состоянии живости (можно ли считать вирус живым или нет) с вопросом о категории одушевленных (в отличие от неодушевленных) объектов (принадлежит ли данный объект к категории живых существ или нет).

Когда речь заходит о вирусах, эти различные аспекты живости переплетаются и обычно обсуждаются совместно. Действительно, их можно рассматривать как не относящиеся к категории живых существ, поскольку они не способны к автономному размножению, а внеклеточные частицы нуклеиновой кислоты находятся в спящем (инертном) состоянии.

Версия, что вирус живой?

В последнее время некоторые биологи утверждают, что с 2003 года был сделан ряд новых открытий.

В первую очередь открытие растущего числа “гигантских” вирусов видимых под световым микроскопом, часто с большим двухцепочечным ДНК-геномом и большим содержанием генов. Эти относительно большие неклеточные инфекционные агенты радикально изменяют наши представления о живом или неживом статусе. Главным образом потому, что стало очень трудно провести границу между некоторыми клеточными организмами, сильно зависящими от своего хозяина и имеющими менее минимального генома, и гигантскими, которые кодируют многие гены и проявляют некоторую степень автономии.

Понятие организма

Проблема состоит в том, чтобы определить, в какой степени вирусы могут рассматриваться как организмы (с мыслью, что все организмы являются живыми существами, но не все живые существа являются организмами). Ответ на этот вопрос, естественно, будет зависеть от определения организма, которое мы принимаем. Многие биологи по ряду причин, упомянутых выше, таких как зависимость от хозяина и отсутствие автономного метаболизма, считают, что вирусы не являются организмами.

Понятие организма обычно рассматривается как более точное понятие живого существа, поскольку оно связано с идеей очень высокой степени функциональной организации и сотрудничества с сильными взаимодействиями между составными частями.

Те, кто рассматривает жизнь прежде всего как метаболический процесс (преобразование питательных веществ), склонны исключать вирусы из живого мира, в то время как те, кто рассматривает жизнь прежде всего как эволюционный процесс, гораздо более склонны говорить, что вирусы принадлежат к живому миру.

Однако даже те, кто скептически относится к вопросу о живом статусе вирусов, обычно считают, что более широкий вопрос о месте вирусов в биологическом мире заслуживает внимания.
Действительно, независимо от их включения или исключения из категории живых существ, вирусы обязательно выступают в качестве основных биологических объектов с нескольких ключевых точек зрения.

Вирусы являются Дарвиновскими сущностями, самовоспроизводящимися и подверженными эволюционным процессам, таким как естественный отбор и дрейф, в то же время оказывая избирательное давление на своих хозяев.

Все это говорит о том, что вопрос о том, что делают вирусы (различные эволюционные, экологические и физиологические явления, в которые они вовлечены), на самом деле не менее важен, чем вопрос о том, что они собой представляют (то есть вирус живой или неживой).

Таким образом, изучение вирусов поднимает фундаментальные вопросы, связанные с определением жизни, биологической индивидуальности и идентичности, понятием организма и онтологией живых существ или процессов.

В этом контексте философам биологии – и, возможно, даже всем философам-кажется крайне важным начать обращать внимание на вирусы которые могут изменить мир.

Читайте также: